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Abstract : This poster aims to present an overview of the main results achieved by the ESA SAMOSA project. The poster will concentration in advanced
processing techniques and retracking techniques to assess the performance of SAR altimetry over water surfaces.
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INTRODUCTION

The use of Synthetic Aperture Radar (SAR) techniques in conventional altimetry—i.e., Delay Doppler Altimetry (DDA)—was first introduced by R.K. Raney in 1998 [1]. This technique
provides an improved solution for water surface observations due to two major innovations: the addition of along track processing for increased resolution, and multi-look processing for
improved SNR. Cryosat-2 is the first satellite to operate in SAR altimetry mode (a.k.a DDA mode). Although its main focus will be the cryosphere, this instrument will also be sporadically
operative over water surfaces, thus provide an opportunity to test and refine the improved capabilities of DDA.

This poster will present an overview of the main results achieved by the ESA SAMOSA project. SAMOSA stands for “Development of SAR Altimetry Studies and Applications over
Ocean, coastal zone and inland waters”. For this study the SAMOSA consortium has developed new theoretical models and analyzed new processing techniques to assess the
performance of DDA over water surfaces. These include the development of a new re-tracker.

The work presented here is of interest to the ESA’s Sentinel-3 mission. This mission will be devoted to the provision of operational oceanographic services within Global Monitoring for the
Environment and Security (GMES), and will include a DDA altimeter on board.
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Figure 1: CryoSat-2 operating MODES of interest for SAMOSA
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