

PASS-SWIO

Portagauge And Satellite Sea level monitoring system for the Southwest Indian Ocean

Webinar objectives

- Introduce the PASS-SWIO project
- Discuss impacts of sea level rise for Madagascar
- Describe the Portagauge
- Provide context on sea level variability and measurements
- Introduce user requirements questionnaire

	Time BST/EAT	Item	Speaker
1	1200/1400	Welcome - Introductions	Amani Becker
2	1210/1410	Overview of the PASS-SWIO project	Amani Becker
3	1225/1425	Impacts of Sea Level Rise in Madagascar	Haja Razafindrainibe
4	1240/1440	Measuring Sea Level - Tide Gauges and Satellites	David Cotton
5	1255/1455	Description of the Portagauge	Geoff Hargreaves and Dave Jones
6	1310/1510	Introduction to Sea Level Variability in the context of the SWIO	Angela Hibbert
7	1325/1525	Introducing the questionnaire	David Cotton
8	1330/1530	Close	

There will be time for questions after each presentation

The PASS-SWIO Team

Amani Becker

Dave Jones

David Cotton

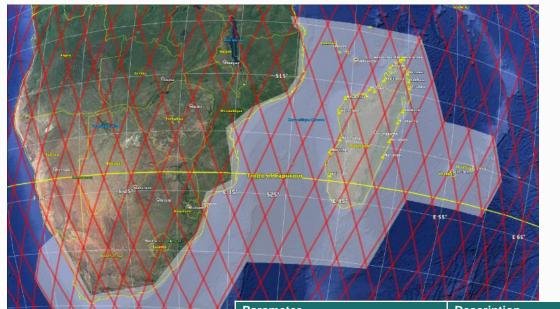
SAT C

Rhino Rajaonarivony

Angela Hibbert

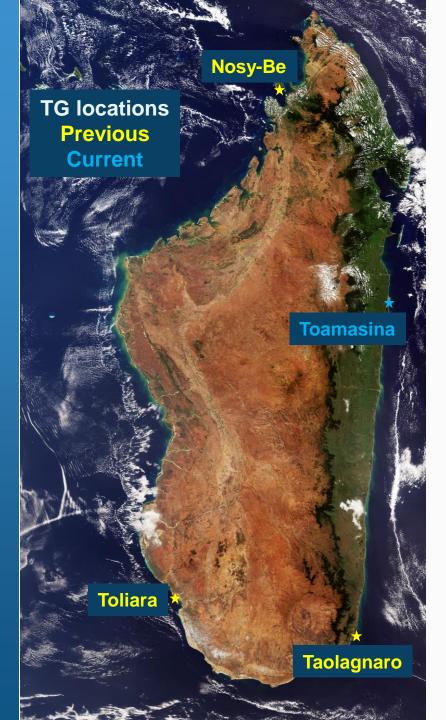
Geoff Hargreaves

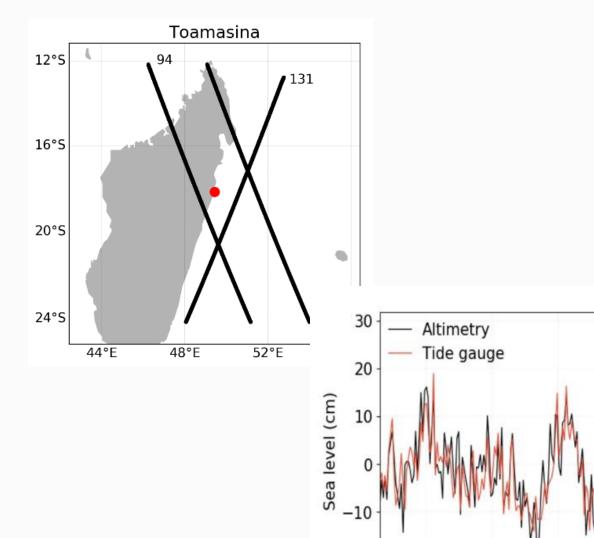
Haja Razafindrainibe


Simon Williams

Francisco Mir Calafat

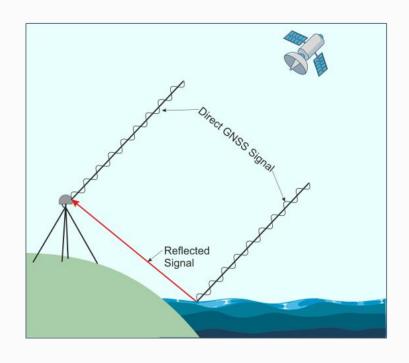
https://www.c-rise.info/

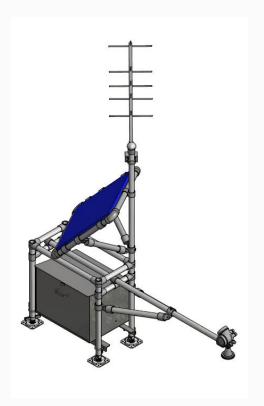


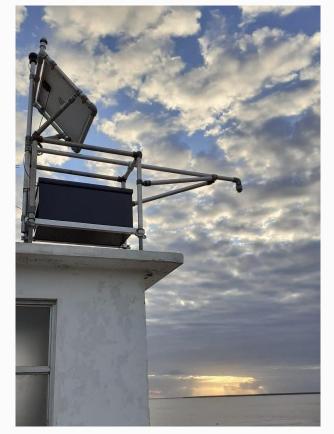

13°S		1	WW		- 6
20°S		7 - 3	XX	XX	- 5 (ık/ww)
27°S		- X	$\mathcal{N}\mathcal{N}\mathcal{N}$	1 2 %	13 E
34°S	NO.		-		- 2 ja
	XXX	XXX			- 1
,	15°E	30°E	45°E	60°E	

Sea level trend (mm/yr), Jason 1, 2 and 3 (2002-20)

Parameter	Description	Time Coverage	Satellites
Sea Level	Along track data from the NOC coastal processor, 10 day repeat	2002-2019	Jason-1, 2 and 3
Sea Level	Along track data from the NOC coastal processor, 35 day repeat.	2002-2010, 2013-2016	Envisat, AltiKa
Significant Wave Height climatologies	Monthly, 1° x 1° gridded climatologies, sourced from Globwave	1992-2019	ERS-1, ERS-2, Envisat, Topex, Jason-1, 2 and 3
Ocean Wind Speed and direction climatologies	Monthly, 0.25° x 0.25° gridded climatologies, (CMEMS)	2007-2019	Metop-A, Metop-B
Total surface current (geostrophic + Ekman)	Daily, 0.25° x 0.25°, gridded climatologies, sourced from Globcurrent	1993-2019	Envisat, Jason-1, 2 and 3
Significant Wave Height, wind speed	Near Real Time along track data	Daily updated	Jason-2 and 3, AltiKa, Sentinel-3
Wind speed and wind direction	Near Real Time data across scatterometer swath (25km resolution)	Daily updated	Metop/ASCAT-A
Total surface current (geostrophic + Ekman)	Near Real Time data, 0.25° x 0.25°	Weekly updated	Jason-2 and 3
Coastline change mapping	Annual shoreline position, shoreline change rate, forecast shoreline position for 10 and 20 years	2000-2020	Landsat 7 and 8

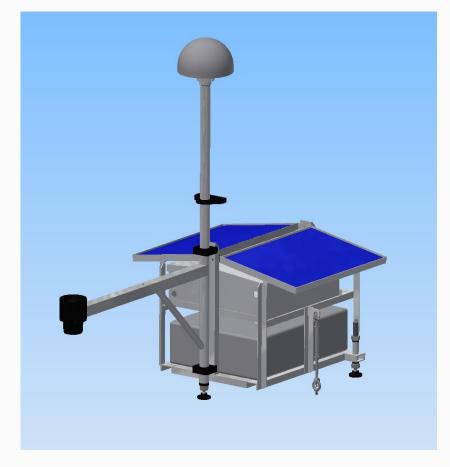

-20


Year

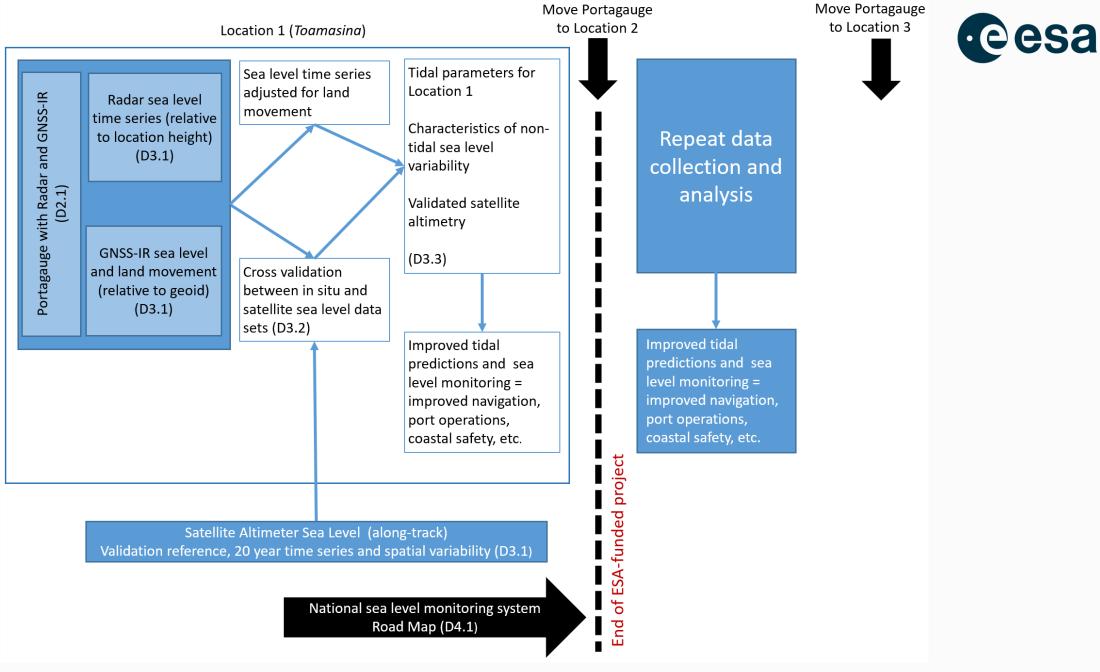

PASS-SWIO Project Overview

The project aims to establish a sea level monitoring system for Madagascar based on the installation and deployment of a low-cost relocatable tide gauge (Portagauge), which uses GNSS-IR technology, combined with the analysis of satellite altimeter sea level data to provide validation and wider scale knowledge on sea-level variability.

Portagauge



Campaign measurements can be used to:


- validate models
- monitor and/or predict tides, waves and surges
- estimate design levels for port redevelopments
- check data from permanent tide gauges

Portagauge connects altimetry data to physical datums on land

Can be used to establish long-term sea level trends without a 30-40 year tide gauge record

Mark 2 Portagauge design for Madagascar

Recap of project stages

Design and Build Portagauge

Ship Portagauge to Madagascar

Installation and operation training at Toamasina

Data collection portagauge / tide gauge / satellite

Data analysis and reporting

Training

Stakeholder consultation

Roadmap

Deployment at new location

Questions?

Agenda

	Time BST/EAT	Item	Speaker
1	1200/1400	Welcome - Introductions	Amani Becker
2	1210/1410	Overview of the PASS-SWIO project	Amani Becker
3	1225/1425	Impacts of Sea Level Rise in Madagascar	Haja Razafindrainibe
4	1240/1440	Measuring Sea Level - Tide Gauges and Satellites	David Cotton
5	1255/1455	Description of the Portagauge	Geoff Hargreaves and Dave Jones
6	1310/1510	Introduction to Sea Level Variability in the context of the SWIO	Angela Hibbert
7	1325/1525	Introducing the questionnaire	David Cotton
8	1330/1530	Close	

There will be time for questions after each presentation