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1. Introduction 

The Northern Adriatic Sea, with Veneto and Friuli-Venezia Giulia regions has about 2.400 km2 of 
low-lying areas along 300 km of coast (Bondesan et al., 1995). Some important inland water 
basins are found in this coastal zone: the lagoons of Marano-Grado and Venice, and the Po River 
with its delta (Figure 1). These areas are exposed to sea level rise and storm surge related risks. 
Coastal lagoons are similar to lakes but connected to the ocean (Tagliapietra et al., 2009). Coastal 
lagoons are a geographically well-defined typology, possibly protected from wave action and 
exposed to weaker and less persistent winds. A study in Arcachon Bay, a typical semi-sheltered 
lagoon located on the Atlantic coast of France, showed ERS, ENVISAT, SARAL and CryoSat-2 
altimetry accurate at >40 cm against ground-truth (Salameh et al., 2018). There is no study (with 
validation) using Sentinel-3. The Po River has been flowing at extremely low levels since 2022, 
with the sea water going inland along the delta, making the water more saline and putting at risk 
the agriculture sector that uses water for irrigation. The surface level variability is an important 
driver of the salinity variability from the coast to upriver (Nienhuis et al., 2023). HydroCoastal 
project provides for the first time a joint coastal zone and river data set that will permit to relate 
coastal sea level and river water surface levels and discharge. 

The results of the analysis presented in this study are separated for the lagoon areas and for the 
coastal zone. In the following sections the words “LAGOON” and “SEA” are used to distinguish 
results pertaining to the lagoon areas from those valid in the offshore coastal zone. 
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scientific exploitation; c) to inter-compare the HydroCoastal product with the official ESA product 
and other existing products. One is the SAR Versatile Altimetric TOolkit for Research and 
Exploitation (SARvatore) for Sentinel-3, starting from L1A altimeter data, that uses the GPOD (now 
EarthConsole, hereinafter GPOD) platform (Dinardo et al., 2016). The second is the range from the 
Precise Inland Surface Altimetry (PISA) processor (Abileah et al., 2021). 

2.2.1 FES tide 

We have assessed the performance of FES2014b tidal model (Lyard et al., 2016) in the lagoon 
through sensitivity tests, calculating the astronomical tide for ten years for the Grado tide gauge, 
with the Utide package (32 and 8 components), synthesising it with the FES2014b model (34 
components), and comparing the results with the official astronomical tide analysis computed by 
the local authority in charge of tide forecasts (8 components). FES2014b gave results of similar or 
better quality with respect to the official analysis. The metrics used was the RMSD between the 
reproduced astronomical tide and the sea level time series. 

2.2.2 Mean sea surface 

The Mean Sea Surface (MSS), which is the average of Sea Surface Height (SSH) over a period of 
time, has been traditionally computed as an along track profile. Merging data from multiple 
missions permitted to create a MSS over a global grid. A gridded MSS is necessary for drifting 
missions as CryoSat-2. As large discrepancies are still noted after zooming in some coastal sites, 
two native MSS data sets were recovered and tested in the lagoon: CLS-CNES 2015 and DTU 
2018. The CNES-CLS 2015 MSS model is referenced to the 20-year period 1993-2012 (Pujol et 
al., 2023). The DTU 2018 is referenced to the 25-years period 1993-2017 (Andersen et al., 2018). 
The two MSSs were compared with global and local geoids in order to ascertain their suitability. 
Comparison with TG measurements was considered essential to enable the full scientific 
exploitation in lagoons. The recipe used to transform range to a quantity comparable to tide gauge 
observations is reported in the following section. 

2.2.3 Quality flags 

The valid values retained for the HydroCoastal data are those for which the corresponding flag is 
set as good. They are: 

● flags_ubo_swh quality flag SWH [0 success, 1 failed] for UBONN SWH 
● flags_ubo_sig0 quality flag sigma0 [0 success, 1 failed] for UBONN σ0 
● flags_ubo_range quality flag range [0 success, 1 failed] for UBONN range 
● flags_dtu  Use data with flags [0 and 1]  for DTU range 

rain_flag and rad_surf_type were not used. 

No flags were considered for the ESA range, σ0 and SWH. 

Moreover, only altimetry measurements collocated on water were considered: 

● surf_type  Surface Type Flag [0 ocean, 1 enc.seas/lakes, 2 ice, 3 land] 

In both the Marano-Grado Lagoon and Venice Lagoon, some additional land and water masks 
have been defined, and the surf_type flag set accordingly. 
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2.2.4 Methodology used to compare ALT and TG 

In order to compare satellite radar altimetry observations with time series of relative sea level 
height registered at the Grado harbour, we calculated the total water level envelope (TWLE) 
anomalies for both the altimeter and the tide gauge. TWLE is the geocentric sea level height 
measured by the altimeters, i.e. the sea level inclusive of ocean, polar, load and solid earth tides, 
atmospheric forcing, wave setup, etc. As the relative sea level height measured by tide gauges 
does not include the solid earth tide, the load tide and a fraction of the geocentric polar tide, such 
terms are subtracted from the altimetric TWLE (Fenoglio-Marc et al., 2015). Finally, also the 
chosen MSS is subtracted from altimetric TWLE. Tide gauge observations are transformed to 
TWLE anomalies by subtracting the local MSS. Such TG MSS is obtained by averaging the TG 
sea level signal over the same time period used to obtain the altimetry MSS. This procedure 
permits us to compare the two anomalies in a consistent way, despite the fact that only relative 
measurements are used, instead of absolute ones. In terms of HydroCoastal L2 product 
parameters, the formulas for obtaining the altimetric and the tide gauge TWLE anomalies are given 
below. 

TWLE anomaly for altimetry: 

𝐿 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒  𝑟𝑎𝑛𝑔𝑒 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑡𝑖𝑑𝑒 𝑀𝑆𝑆   

𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑡𝑟𝑜𝑝𝑜 𝑡𝑟𝑜𝑝𝑜 𝑖𝑜𝑛𝑜  

𝑡𝑖𝑑𝑒 𝑡𝑖𝑑𝑒  𝑡𝑖𝑑𝑒  0.468 ∗ 𝑡𝑖𝑑𝑒   

TWLE anomaly for tide gauge: 

𝐿 𝑙𝑒𝑣𝑒𝑙  𝑀𝑆𝑆   

All the tide gauge data used in this study are referenced to the same local datum: the zero 
mareografico di Punta della Salute, ZMPS in short. Punta Salute is the official zero-height 
reference to which sea level heights are measured in the Venice and Marano-Grado lagoons by 
local and national agencies: the Centro Previsioni e Segnalazioni Maree (CPSM) of the Venice 
Municipality, and the Servizio Laguna of the Istituto Superiore per la Protezione e la Ricerca 
Ambientale (ISPRA). It corresponds to the Venice mean sea level of the years 1884-1909 
(conventionally referred to 1897). For such a reason it has been called Zero Mareografico di Punta 
Salute (ZMPS). It is known to be about 32 cm lower than the actual mean sea level in 2022 
(AA.VV., 2022), because of eustatism and local subsidence. 

The comparisons between altimetry data and in situ observations follow these rules: 

1. The observations of each altimetry pass over the area of interest (AOI) are divided in two 
sets: the observations falling inside the LAGOON area and those falling inside the SEA 
area. For each of the two altimetry sets, the median value is chosen as representative for 
that satellite pass in the two regions of the AOI (LAGOON and SEA); 

2. Tide gauge representatives of sea level (L)/wind speed (WS)/significant wave height (SWH) 
are chosen selecting the in situ observations matching the mean time of the altimetry flight 
over the AOI ± 26 minutes, so that at least 5 regular observation are selected if sampling 
period is 10 minutes, or 10 regular observation for sampling period of 5 minutes. The 
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selected in situ data are then linearly interpolated to the exact mean pass time of the 
satellite over the AOI; 

3. The two time series, formed by one altimetry median value for each satellite pass, for each 
track (in case of S3) and each region of the AOI, and a single value of the in situ data 
identified by linear interpolation around the pass mean time, are then used for calculating 
the statistical indicators described in the following section. 

2.2.5 Statistical indicators used to compare TWLE anomalies 

Five statistical indicators have been used in the study, in order to give a solid picture of the 
different characteristics of the observations and of their differences. Indicated with 𝑋  and 𝑌  the 
occurrences of two datasets to be compared pairwise, the five indicators are defined as: 

● BIAS: 𝑋 𝑌 

● MAE: median absolute error 𝑀𝐴𝐷  𝑚𝑒𝑑𝑖𝑎𝑛 |𝑋 𝑌 |  

● RMSD: root mean square difference 𝑅𝑀𝑆𝐷  ∑ 𝑋 𝑌  

● MAD: median absolute deviation 𝑀𝐴𝐷  𝑚𝑒𝑑𝑖𝑎𝑛 |𝑋 𝑌 𝑋 𝑌 | , 𝑋  𝑚𝑒𝑑𝑖𝑎𝑛 𝑋   

● CRMSD: centred RMSD 𝐶𝑅𝑀𝑆𝐷  ∑ 𝑋 𝑋 𝑌 𝑌 ,  𝑋  𝑚𝑒𝑎𝑛 𝑋  

BIAS and MAE are indicators of accuracy in the reproduction of one dataset by the other. While 
BIAS is sensitive only to the average-error magnitude, MAE also varies with the variability within 
the distribution of error magnitudes, thus combining both disagreement factors in a number. 

MAD and CRMSD express the degree of precision in one dataset reproducing the other: while 
MAD weighs the errors in a linear manner, CRMSD is more sensitive to outliers as they count as 
squared terms in the error sum. Being MAD and CRMSD independent from the averages of the 
two datasets, they are complementary to BIAS and MAE. 

RMSD is an expression of both the variability within the distribution of error magnitudes and the 
average-error magnitude. Moreover, it also gives higher weight to outliers. For such reasons 
RMSD is an indicator of accuracy, precision and dispersion. 

2.2.6 Sea state bias 

Having as objective the assessment of altimetry products in coastal lagoons, we have not used the 
sea state bias correction. The reason is that coastal lagoons are less affected than the open sea 
by strong winds and waves. Moreover, as coastal lagoons are subjected in general to shorter fetch, 
the usual global formulation of sea state bias based on the significant wave height could give 
biased results.  

2.3 Results 

Before getting HydroCoastal data, altimeter data collected along the two S3B tracks were 
scrutinised, with special focus on the impact of: a) reflectivity of the sea surface on radar echoes 
over lagoon; b) impact of geophysical corrections and vertical references on SLA; c) global vs local 
bathymetry. An in situ survey permitted to identify fish farms and enclosed bays not connected to 
the sea that were then masked. Results of these analyses were presented during previous project 
progress meetings and then summarised during the talk at the 13 Coastal Altimetry Workshop that 
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took place in Cadiz (Spain) from 6 to 10 February 2023. Briefly, several specular and quasi-
specular echoes were found inside the lagoon, with more specular echoes in S3B track 384 
(ascending), especially in the northern part, than S3B track 250 (descending) where land 
interference can explain less pure specular behaviour. Clusters of similar surface levels over time 
were identified over specific land areas and are consistent with the underlying topography. Large 
number of echoes were also recovered inside narrow rivers (width of 50-100 m), predominantly 
along the Corno River because of its collinearity with the S3B track 384. The impact assessment of 
the geophysical corrections on the surface water levels within the lagoon shows that the Dynamic 
Atmospheric Correction (DAC) is the second source of sea level variability, while astronomical 
tides (from FES2014b model) are the first one. Residual SLA includes currents, residuals pressure 
effects not corrected by instantaneous IB (typical of Mediterranean basin). The consistency of data 
was confirmed by the inverted slope of the tide between the two S3B tracks, matching the 
expected latitudinal variability of tides with the pass direction. The performance assessment of 
FES2014b model showed that when Utide was forced to use the FES harmonics (32 out of 34) 
modelled tides agree at ~2 cm with those at tide gauge (FES assimilates Trieste TG but not Grado 
TG). DTU 2018 and CLS-CNES 2015 MSSs have been also assessed in the lagoon and results 
are summarised in a technical note (De Biasio and Vignudelli, 2023), where we suggested a 
preferable MSS (DTU 2018) based on literature and on consistency with local and global geoid 
slopes. A new methodology that makes use of the specular or quasi-specular reflections of the 
high-resolution radar signal was also tested for data selection in lagoons.  

The performance of HydroCoastal data set was finally evaluated in comparison with in-situ 
observations from tide gauge located in Grado as well as L2 state-of-the-art products (SARvatore) 
from the former GPOD ESA service, using 82 cycles of S3B (41 track 250 + 41 track 384), over the 
SEA and LAGOON areas of the Marano-Grado region. The UBONN retracker provides range, 
significant wave height and backscatter; the DTU retracker provides only range. The comparison of 
results using UBONN and DTU has been presented at PM13 with statistics indicating low-bounds 
about precision and accuracy. As the HydroCoastal UBONN retracker needs a MSS as input, the 
same MSS has to be used when calculating TWLE anomalies, to be consistent. CLS-CNES 2015 
MSS was fed to the UBONN retracker, so we have to adhere to the same protocol, and use the 
same MSS to compute TWLE and SLA anomalies. The remaining altimetric retracked ranges 
(ESA/ocean retracker, HydroCoastal/DTU, GPOD/SAMOSA+) can use any MSS for calculating the 
anomalies. To investigate the impact of the MSS used in the retrieved anomalies, and having in 
mind that the two available MSSs overlap off-shore, an experiment was done, calculating the 
histograms of the SLAs for the three HydroCoastal retrackers for the SEA and the LAGOON areas. 
Figure 2.2 shows these histograms: for the SEA area (left panel), the CLS-CNES 2015 MSS was 
used for all the retrackers. For the LAGOON area (middle and right panels), CLS-CNES 2015 MSS 
was used for UBONN, while ESA and DTU anomalies were calculated subtracting the CLS-CNES 
2015 MSS (middle panel) and DTU 2018 (right panel). ESA/UBONN/DTU SLA relative frequencies 
are centred around the same SLA in the SEA zone; the official ESA SLA has a broader shape with 
respect to UBONN and DTU. It should be noted that UBONN retrieves 3% less measurements 
than ESA and DTU in such region. In the LAGOON area ESA/UBONN/DTU SLA relative 
frequencies are centred around different values, due to some extent to the MSS used. The official 
ESA SLA has a broader shape with respect to UBONN and DTU. UBONN retrieves 37% less 
measurements than ESA and DTU inside the lagoon. If DTU MSS is used for ESA and DTU SLAs 
(right panel), the histogram of DTU mostly overlaps that of UBONN, while that of ESA gets shifted 
by about half a metre towards UBONN. 
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enlarge the value of the CRMSD. ESA has very low values of BIAS and MAE, but the presence of 
more outliers than the other retrackers penalises both the CRMSD and the RMSD. 

In the LAGOON region, ESA shows low precision and accuracy (high BIAS and MAE, high MAD 
and CRMSD). DTU exhibits scarce accuracy (high BIAS and MAE) but high precision (low MAD 
and CRMSD). GPOD and UBONN have similar performances. 

Table 2.1: statistical indicators for the TWLE anomaly differences (Lalt-Ltg) in the SEA region. Values are in 
metres. 

SEA ESA UBONN DTU GPOD 

BIAS 0.10 0.09 0.06 0.16 

MAE 0.06 0.09 0.05 0.14 

MAD 0.05 0.08 0.03 0.04 

CRMSD 0.42 0.09 0.12 0.15 

RMSD 0.43 0.13 0.13 0.21 

 

Table 2.2: statistical indicators for the TWLE anomaly differences (Lalt-Ltg) in the LAGOON region. Values are 
in metres. 

LAGOON ESA UBONN DTU GPOD 

BIAS -0.56 0.06 -0.37 0.09 

MAE 0.70 0.09 0.37 0.07 

MAD 0.14 0.08 0.03 0.05 

CRMSD 0.45 0.14 0.06 0.14 

RMSD 0.72 0.15 0.37 0.17 

2.4 Summary 

State of the art products have demonstrated in a number of test coastal regions that it is possible 
to enhance the quality and quantity of the altimeter data exploitable close to the coast. For 
instance, comparisons of along track data to nearby tide gauge observations around Australian 
coast show RMSE accuracies in the range 10-20 cm in the 0-5 km coastal strip (Peng et al., 2021). 
Similar results (5-15 cm) are found using tide gauges located in West Africa, North East Atlantic 
and Mediterranean (Birol et al., 2021). On average, 30-40 cm in the 0-3 km along track coastal 
segment are found using several tide gauges along the Baltic Sea (Passaro et al., 2022). These 
studies are part of a larger effort in validating altimetry products around the world’s coastline, e.g. 
in the Mexican Caribbean (Palma-Lara et al., 2023), Spanish coast (Aldarias et al., 2020), in the 
Southern Bay of Biscay (Vu et al., 2018), Hong Kong (Xu et al., 2018), etc.  

With the HydroCoastal product, we show for the first time that Sentinel-3 is capable of retrieving 
data at land-sea-boundary and waters within land. 

The scientific analyses show very good comparisons to in situ data, with MAD of the order of 3 cm 
and MAE of the order of 5 cm. There is a clear consistency between the three satellite-based 
independent products. UBONN and DTU comparisons against tide gauge are in a very good 
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agreement. For GPOD RMSD are higher (17-21 cm). ESA has the worst performance with the 
highest RMSD of 43-72 cm. However better results were found when using suitable MSSs 
(DTU2018). 

Altimetry measures sea level offshore, while TGs are in harbours: this has been a central issue in 
the coastal altimetry workshops. As part of the study, we have also proposed a new approach 
based on the PISA processor described in Abileah and Vignudelli (2021) to assess performances, 
using only bursts over LAGOON that are specular or quasi-specular. By using this approach, the 
precision is measured from burst-to-burst variability with respect to the TG. The accuracy is 
measured by matching altimetry and in situ measurements. Bursts inside the lagoon are found 
more accurate than bursts outside the lagoon: sea state is more complex offshore. 

2.5 Highlight main findings 

The case-study of Marano-Grado showed that altimeter data exploitation is now possible where 
previously not considered (lagoons). The study permitted better understanding of data, from 
echoes to sea level, as the radar altimetry is a system and not only an instrument.  

From the technical note on MSS that has been submitted to ESA, we have suggested a preferable 
DTU 2018 MSS based on literature and on consistency with local and global geoid slopes. 

Analyses of retrieved echos that were presented at the Coastal altimetry Workshop in Cadiz, 
highlighted some interesting findings that we mention hereinafter. 

- An assessment of the FES2014 model in the lagoon showed good agreement in terms of 
statistics at TG in Grado; 

- A survey in the lagoon showed that there are areas disconnected from the lagoon (e.g. fish 
farms) that need to be masked with novel methodologies. Using 80 hz instead than 20 hz 
would be more appropriate in lagoons; 

- Flat land altimetry patterns and small rivers (Corno and Auser) were also consistent from 
cycle to cycle, demonstrating that S3 altimetry is promising to retrieve data in these areas; 

- Icesat-2 is another independent data set that can be used to validate the radar altimetry 
products. 

2.6 Potential Scientific / Operational Impact (“Benefit and unique value”) 

Sheltered coastal regions are shallow transition zones characterised by slow water flow, low wind 
and waves, and intertidal marshes further protecting confined portions of the water surface from 
wind. Around 32,000 lagoons (Carter et al., 1996) are identified along 13% of the world's coastline 
(Barnes, 1980). Because of sparse in situ measurements, especially in developing countries, many 
coastal lagoons remain un-gauged in the world. The usage of satellite data is currently the only 
option to monitor sea level changes, besides the fact that in situ observations are expensive and 
need continuous efforts for monitoring and maintenance operations. Moreover, satellite altimetry in 
such an environment gives continuity of observations from open ocean through the coast and 
inland. The proposed approach can be applied globally where the altimeter crosses a lagoon. 
Altimetry measuring precisely coastal sea level inside lagoons is an emerging technology which 
could push this satellite measuring system further inland than ever. 
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2.7 Recommendations 

The in depth altimeter data analyses outlined a number of topics to be addressed, including 
specific R&D investigations that deserve further consideration, with future projects to be 
implemented. Hereinafter some recommendations: 

• Specular and quasi-specular echoes are seen as recurrent and precious for lagoon 
altimetry: they can be the key for bringing altimetry further inside sheltered areas (e.g., 
bays) than ever before. It is recommended to extend the analysis to other lagoons; 

• Specular echoes in lagoons could be used for calibration of radar altimetry, as they can be 
seen as a handy laboratory for understanding the interaction of active microwaves, water 
and land; 

• Marano-Grado Lagoon suggested as cal/val area for the Sentinel-3B, Sentinel-6 and 
ICESat-2 missions, a laboratory where a better understanding of radar reflectance at the 
sea is facilitated, thanks to existing infrastructures and easy logistics; 

• Further analyses are recommended to investigate the physics of echoes and how they 
relate to surface types and wind conditions; 

• Regionalization of range, wind and significant wave height algorithms, as the interface of 
sea and land, the coastal zone, has different characteristics than global ocean, and is also 
of paramount interest for the monitoring of sea level rise and for storm surge applications; 

• An improved MSS is necessary and should be computed using the new reprocessed 20/80 
Hz data; 

• Consistent MSS and geoid are necessary to join sea and land properly. We recommend a 
dedicated study to assess MSS and geoid and the northern Adriatic sea is a good 
laboratory to test with the local ITALGEO geoid. 

 

3. Venice coastal lagoon 

 
The Venice lagoon rests in a fragile balance, subjected to physical, geological, and biological 
processes (e.g., shoreline erosion, subsidence, eustatism, habitat variability, ecosystem dynamics, 
storm surges). It is highly sensitive to changing environmental and climatic conditions. It is 
acknowledged as a spot of sea level variability in the region. Coastal lagoons have not been 
sufficiently explored yet with satellite radar altimetry.  

Storm surge is a regional phenomenon due to the Sirocco wind, directed along the main axis of the 
Adriatic Sea basin and causing a stronger signal in the northwestern part, especially in the city of 
Venice. Here, the well-known “Acqua Alta” phenomenon (High Water) takes place. The challenge 
is to forecast the height of water at time of a surge event, as well as the extent to which it will 
inundate the city. The key quantity in surges is the TWLE, i.e. the Sea Level inclusive of ocean, 
polar and ocean load tides (omitting a fraction of the solid earth tide), atmospheric forcing, wave 
setup, etc (see section 2.2). Sea level anomaly (SLA) can be measured with precision of a few cm. 
We can also get wave height and wind speed at same time. A unique profile of these quantities is 
available from offshore to the coast when a satellite altimeter flies over the area affected by a 
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us all available station data since 2010. Details about tide gauge/weather station geographic 
positions and instrumental equipment are reported in Table 3.1. 

Table 3.1: list of the automatic tide gauge and weather stations in the Venice Lagoon AOI, with details on 
geographic position and instrumental equipment. 

STATION STATION LONG 
NAME 

LAT 
(°N) 

LON 
(°E) 

SEA 
LEVEL 

WIND 
SPEED 

SWH 

BUR Burano 45.48750 12.41549 X   

LNS Laguna nord Saline 45.49559 12.47197 X X  

FUS Fusina 45.40889 12.25694 X  X 

CHI Chioggia porto 45.23254 12.28060 X X  

MAL Malamocco porto 45.33980 12.29197 X X  

PTF Piattaforma 45.31425 12.50825 X X X 

DSF Diga sud Faro 45.41823 12.42655  X  

DSL Diga sud Lido 45.41823 12.42655 X   

MAB Meda Abate 45.25000 12.78000 X X X 

3.1 Objectives 

The main objectives of the impact assessment with reference to the Venice lagoon are: 
- to assess the HydroCoastal product (TWLE, wind amplitude and SWH) in the Venice 

Lagoon and surrounding northern Adriatic Sea; 

- to demonstrate the benefits and the scientific value of HydroCoastal product in the area for 
storm surge monitoring and forecast applications; 

- to investigate the limits and the potential of novel altimetry products in a complex yet fragile 
environment, subject to profound and sudden developments led by anthropic drivers 
(tourism, commerce, navigation, industry and fishery). 

3.2 Methodology / Data Processing 

3.2.1 Total water level envelope anomaly local datum 

The main procedural steps for the analysis of the data are the same described in section 2.2 
Methodology. However, a noticeable difference resides on the calculation of the TWLE anomalies. 
While in the Marano-Grado Lagoon case study the anomalies were calculated over their respective 
MSSs, for the Venice Lagoon study we have adopted a different strategy. All the tide gauges in the 
Venice Lagoon share the same local datum, which is ZMPS (see section 2.2). We use a single 
MSS for all the tide gauges of the network, considering representative for all of them that of the 
PTF station, 14 km off-shore the Venice littoral. As already noted in section 2.2, an in situ MSS 
consistent with the altimetric MSSs is constructed averaging the in situ observations over the 
corresponding time range. For the tide gauge network we have thus two different MSSs, one 
consistent with the CLS-CNES 2015 altimetric MSS, and the other with the DTU 2018 MSS. We 
name them TGmss_cls and TGmss_dtu. 

In the ALT-TG comparisons, we must pay attention in subtracting to the TG level time series the 
appropriate MSS: TGmss_cls if the altimetry time series uses the CLS-CNES 2015 MSS, and 
TGmss_dtu if the altimetric MSS is DTU 2018: 

ALT - MSSx ⇔ TG - TGmss_x 



 

15 
 

To avoid changing the TG MSS for calculating the sea level difference anomalies for every 
different altimetric time series, we can add to both members of the above expression the in situ 
TGmss_x: 

ALT - MSSx + TGmss_x ⇔ TG - TGmss_x+TGmss_x, i.e.: 

ALT - MSSx + TGmss_x ⇔ TG. 

We have finally defined the correct anomalies for both altimetry and in situ data, in a consistent 
MSS system (DTU 2018 for ESA and DTU; CLS-CNES 2015 for UBONN), and above the ZMPS 
local datum. 

3.2.2 Mean sea surface 

Auxiliary data, as the mean sea surface, are central for the exploitation of altimetry observations. In 
the Marano-Grado Lagoon study, we observed that different MSSs can differ substantially from 
each other, impacting the interpretation of geophysical variables, as for example the sea level and 
mean dynamic topography. The same situation is observed in the Venice Lagoon. Figure 3.2.1 
shows the profiles of the DTU 2018 and CLS-CNES 2015 MSSs, as well as the profile of the 
EIGEN-6C4 geoid (Foerste et al., 2014), along track S3B 327 for all cycles. While at open sea the 
two MSSs differ by a limited quantity, near coast they rapidly diverge, reaching about 30 cm where 
the satellite track crosses land. 
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S3A 193 2022-09-27 09:44:00 DSL 99 2022-09-27 09:30:00 1.1 

S3A 327 2021-05-11 20:33:00 MAB 102 2021-05-11 20:05:00 2 

S3B 193 2019-12-16 09:46:00 PTF 121 2019-12-16 10:20:00 3.9 

S3B 193 2020-12-28 09:46:00 DSL 138 2020-12-28 09:30:00 6.5 

S3B 327 2020-06-04 20:34:00 PTF 118 2020-06-04 19:25:00 3.8 

 
Table 3.3 lists the storm surge events when the MOSE barrier was in operation and the satellite 
was flying at the same time. There are only two cases since the MOSE started operating. 
Unfortunately, one refers to the S3B track 193 that crosses the lagoon only, while the other (S3A 
193) flies over open sea. 

Table 3.3: list of collocated MOSE barrier operation events and CS2/S3 satellite passes. Columns 
correspond, from left to right: mission name, orbit (CS2)/track (S3) mean time of satellite pass in the area, 
station of reference, maximum level reached over the ZMPS, time of the maximum, MOSE operation 
duration in hours. 

mission orbit 

/ track 

sat pass time station SEV 
max 
lev. 

SEV time MOSE 
operation 
duration (h) 

S3B 193 2020-12-28 09:46:00 PTF 128 2020-12-28 09:05:00 19.1 

S3A 193 2021-02-10 09:44:00 PTF 127 2021-02-10 07:05:00 8.5 

 

Storm surge events recorded in Venice from 2010 to 2022 are shown in Table 3.2, when S3/CS2 
are flying at same time. Seven events were selected for illustration. They correspond to the 
passage of CS2 on 25 September 2010, 20 November 2013 and 5 November 2014; S3A along 
track 193 (27 October 2018, 4 May 2019, 9 November 2019, 10 February 2021) and S3B along 
track 327 (4 June 2020). The selected passes are marked bold in Table 3.2. Two tracks of 
Sentinel-3 were also found in coincidence with the operations of the MOSE barriers, segregating 
the Venice Lagoon from the open sea during remarkable storm surge events. They are reported in 
Table 3.3. Unfortunately the two tracks do not cross the littoral dividing the lagoon from the open 
sea, a circumstance that would have allowed some interesting investigations to be conducted, and 
were not analysed. 

As for the Marano-Grado Lagoon, two masks were generated to separate LAGOON from SEA. 
Four different ranges were used (ESA standard, UBONN, DTU and GPOD that uses SAMOSA+ at 
80 hz). TWLE are referenced to the local reference ZMPS, as explained in the methodology 
section.  

Two figures for each event are reported showing the full TWLE, SWH and wind profiles temporally 
collocated with the TG measurement at the time of satellite overpass. This allows a visual 
evaluation of how altimetry captures the variability of the sea level along the track. 

Figure 3.3.1 shows the first example of a storm surge happening on 25 September 2010 that 
produced a surge of 104 cm measured at DSL at 09:20. CS2 is crossing the northern Adriatic sea, 
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The HydroCoastal processor also generated SWH data from retracked waveforms. SWH can be 
captured during the storm surge events, although UBONN shows data gaps. The estimated SWH 
is often in good agreement with observations. 

3.5 Highlight main findings 

A remarkable finding is that by using specialised retrackers (UBONN and DTU) good high-rate 
measurements of TWLEs can be recovered much closer to the coast and within the lagoon than for 
the ESA product. However, the altimetry system needs auxiliary information to transform radar 
measurements in sea level. An important confirmation of what is found in the Marano-Grado 
lagoon is that MSS vertical references can strongly differ from one dataset to the other, especially 
near the coast and within the lagoon. 

The exploitation of wind amplitude and SWH is still at the early stage. Both variables can be 
measured, also inside the lagoon, but the results show some situations that need a more in depth 
assessment. Knowing the wind speed along track at the time of the storm surge event is important 
as no other instrument is capable of providing the same spatial variability with similar spatial 
resolution.  

3.6 Potential Scientific / Operational Impact (“Benefit and unique value”) 

The main users of the HydroCoastal product are the Centro Previsioni e Segnalazioni Maree 
(CPSM) of the Venice Municipality, and the Servizio Laguna of the Istituto Superiore per la 
Protezione e la Ricerca Ambientale (ISPRA). The ESA eSurge Venice project showed good 
potentialities of altimeter data, now those are further improved in quantity and quality (with 
increasing spatial resolution), but for the operational usage of altimeter data, the need of frequent 
revisiting is a strong requirement. Satellite radar altimetry is not designed with in mind storm surge 
applications. 

Satellite altimetry in the storm surge operational forecasting is still of limited use (because few 
altimeters are still flying in a constellation). Nevertheless some passages were available during 
storm surge events for an assessment. It should be noted that satellite radar altimetry has evident 
application in measuring storm surges, albeit currently limited by the number of simultaneous 
altimetry missions. Constellations of altimeters seem to be the more appropriate solution for the 
development of satellite radar altimetry services for storm surge forecasting. Satellite radar 
altimetry can compensate with available tide gauge measurements that provide only the temporal 
dimension at given coastal locations. The combined measurements can be used as an input for 
numerical models, and has been shown to improve predictions in the offshore part of the Adriatic 
Sea in the ESA eSurge Venice project (De Biasio et al., 2016). 

The availability of S3 archived data represented a valuable opportunity for a retrospective analysis 
and testing. The HydroCoastal work establishes a more complete understanding of the 
performance of satellite radar altimetry, especially near coasts and within the lagoons, to work 
towards a better exploitation of these data. The actual scenario of S3 provides TWLE, SWH and 
wind profiles at the time of few storm surge events. The additional obstacle to further use 
HydroCoastal data operationally, is to count on faster data delivery to users. The additional post-
processing is necessary to achieve the requested centimetric accuracy that needs to be 
transferred to the users in near real time. 
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3.7 Recommendations 

Single altimetric along track profiles of TWLE, wind amplitude and SWH are useful for verification 
and support during the interpretation of storm surge events, in synergy with all the other data sets 
used by the forecasting services in Venice, to follow the spatial and temporal variability of the event 
in order to provide a proper forecasting for the population, in Venice as a first objective, but also all 
around the world, wherever coastal settlements are threatened by storm surges.  

In particular, the following recommendations are advised for future scientific activities: 

- We need all the parameters (TWLE, wind and waves) for storm surge applications. TWLE 
improved thanks to retracking. Wind amplitude and SWH are not mature for exploitation 
yet. The algorithm to transform backscatter in wind is tuned for the global ocean, and needs 
to be revisited at regional level, in the coastal zone and in coastal lagoons. SWH is not 
always agreeing with ground-truth. There is a need to understand the reasons for that. It 
should be noted that buoys and semi-mobile seamarks could not measure SWH well during 
the storms; 

- Establishing a common vertical datum (geoid) for storm surge studies at regional level to 
integrate all height measuring systems and exploit satellite radar altimetry for inundation 
assessments; 

- Re-computing a Coastal MSS with high-resolution SSH for better understanding ocean 
dynamics and for non-repeating tracks. Examining the effects of different MSS references 
and the opportunity of defining a MSS tuned for storm surge applications; 

- Exploiting novel methodologies for sea surface height determination, based on specular 
reflection, as they can be more accurate for geodetic and cal/val applications in the coastal 
zone; 

- Exploiting the extra resolution (80 hz or less) possible by reprocessing individual echoes; 

- Improving the revisiting and exploring the possible advantage of constellation of small 
altimeters, as the storm surge signal is much higher than the background level and 
therefore might require a reduced radar payload; 

- Investigate how the new Hydrocoastal product could be optimally exploited in the 
reanalyses of storm surge events and in the operational context if the satellite is flying at 
the time of the event; 

- Stimulate the development of new high-resolution land-sea masks, possibly with a dynamic 
approach that could account for the tidal dynamics in the coastal strip and in coastal 
lagoons. 
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