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ABSTRACT. The purpose of these notes is to gather some ideas and possible approaches on how
to analyze distributions of responses experienced by a vessels during a voyage. In this presentation
we attempt to give a complete account of definitions and results. The main purpose is to clarify
the methodological basis for future reference so one can avoid possible errors in interpretation and
oversimplifications that could cause inaccuracies in statistical analysis.

1. INTRODUCTION

Let us consider a ship which is undertaking voyages over a certain relatively long period of
time. The load she experiences and consequently her response to this load are random and thus
they would be best analyzed by some reliable statistical methods. Clearly, from the engineering
point of view, the most important is to find an accurate approach to study the extremal events
occuring during this period of exploration. The principal methodological challenge in the so-posed
problem comes from several different sources of the involved random variation. They are directly
related to temporal-spatial scale within which one consider the sea surface. Although, conditions
occuring on the sea surface are changing continuously in time and in space, it is quite common in
the literature that the randomness is different in different scales and different methods should be
chosen depending on the scale. We consider the following three different threshold levels. First,
there is randomness related to short-time variability of the sea surface in time intervals measured
in minutes or in few hours at most and in a restricted region in which the weather conditions
appear to be the same. Another level of variability is due to the change of the sea states which
is the consequence of changes of weather conditions occuring within several hours or even several
days and also due to different conditions in distant regions of the sea. Then there is a stochastic
variability of different journeys which are undertaken at different times and possible along different
routes. Of course, these are only few of many possible factors and the complete analysis would
be extremely complex if possible at all. In these notes we focus on these factors which are most
important for the statistical properties of extremal waves (or responses). However, the proposed
methods can be also applied to studies of arbitrary, not only extremal, waves.

In various practical problems, for example in safety considerations, it is important to deter-
mine the probability P(X > r) that the response X exceeds some critical level r. The problem is
not a simple one, since it is not even obvious how such a probability should be defined. Some more
precise formulation is needed which has to take into account the intended use of the probability.
In order to define it correctly, often the ideal situation of unlimited available data is considered
and then frequencies of the events that are denoted by P(X > r) has to be extracted and correctly
interpreted in the terms of the used model.

To be more specific let us consider the process of load or response (for most of our consid-
eration there is no need to discriminate one from another as the response is a linear or non-linear
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filter of the load) denoted here by X (t). The generic quantity we are interested in is

P( max
t2[0;T ]

X (t) > r; ):

Of course, it has to be specified what is the meaning of this quantity by identifying the model for
X (t) as well as what is the time interval which is considered in the above expression (one voyage,
duration of a storm, lifetime of the vessel). Also various techniques can be used depending how
high is the level r as asymptotic results are often accessible for high levels. High levels occurs,
in principle, only in the extreme conditions of storms on the sea. This brings the importance of
statistical models of storms and loads resulting from them.

Most of the material included in our considerations appeared in some form in the literature
but this is, as far as we know, the first attempt to put together the consistent methodological
framework which, as we hope, will be helpful l for future advances in research on these topics.

In the remaining part of this introduction we describe the concepts and notions which allows
for the precise formulation of the discussed research problems.

1.1. Sea state. One of the crucial concepts in our studies is the notion of the sea state. It is natural
to assume that over a certain short time, say 20 minutes, the conditions which are determining
behavior of the sea surface are steady enough to consider it as a stationary random process. In
Gaussian modeling of such processes the directional spectrum S(w; a) defines completely random
properties of the surface. Thus it would be natural to describe the sea states through the spectrum
governing the sea-surface process. In practice though, this is not possible, since one has available
only some statistics (i.e. estimates of parameters) related to the spectrum. Most often these are
significant wave height H s, mean period T z and the main wave direction f, along the path. In
the following those three parameters, denoted by j = (H s;T z;f), will be called the sea-state
parameters or shortly sea-state. Once they are established the corresponding sea spectra are taken
from some parametric family.

An important issue is to determine what is the actual duration of a given sea-state. Of course,
it is a random variable distribution of which is depending on the state itself. In Doucent et al.
(1987) analysis of Frigg field data set has been presented. It was shown that the distribution of
the sea-state duration Tstat can be well approximated by an exponential distribution P(Tstat > t) =
exp(�(t� 0:4)=3:2), t > 0:4 (in hours), and a mean of 3 hours. This is unconditional distribution
disregarding a sea state in hand. Even more interesting, although not surprising, is that more violent
storms (higher significant wave height) last shorter. The conditional expectation of Tstat given the
significant wave height, decreases exponentially, see Figure 4 in Doucent et al. (1987). As pointed
out in the paper, the duration of the sea-state can be shorter than 20 minutes: “This is especially
true for large values of H1=3 ” (H1=3 stands for the significant wave height). The duration of a
sea-state is important when sampling frequency of the data is considered. We will talk more about
this in the next subsection.

1.2. Route. Assume that a vessel is sailing between two locations from A to B. Here we picture a
route as a curve drawn on a map of ocean. We intend to give methods to combine the distributions
of the loads or ship’s responses from several voyages.

We denote time by t and a position on the ocean by pos = (lo; la), where lo, la, stands for
longitude, latitude, respectively. The route will be denoted by AB and parameterized by the distance
from the starting point A, i.e. AB = fpos(s); s 2 (0; S)g, where S is the distance from A to B. If we
know the time T it takes from A to B, the starting time of the voyage t0 and the speed v(t) at any
time during the voyage, then the route can be also parameterized by time t 2 [t0; t0 +T ] by means
of the relation s =

R t
t0

v(x) dx. In practical computations the route is sampled and represented by a

sequence of points fAB = fpos(si); i = 1; : : : ;Ng, where 0 = s1 < s2 < : : : < sN = S.
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There are several ways of discretizing the route. The most natural one is to choose points
equidistantly. We want the grid to be so dense that we do not need to consider variability of the
sea-states between the grid points. This rises the question of a choice of sampling frequency. One
could use the satellite data to investigate this issue. Since for fixed satellite observations we have fixed
sampling frequency, we cannot come up with denser points without using oversampling techniques.
But usually the data are sampled frequently enough so the question is whether one can take as a
grid point every second or third satellite observation, or rather their averages to reduce the noise in
the data. To verify approaches and a choice of sampling methods the statistics of responses based
on sampled satellite observations could be compared with statistics obtained from the complete
sequence of observations.

Another possibility would be to have a dynamic grid (not equidistant) based on the speed
of the vessel, which often depends on the sea-state. One can sample time equidistantly and then
compute positions si. The sampling frequency should be chosen high enough so, for example,
we are not missing big storms. This is related to the problem of the duration of a sea-state since
we want to avoid the possibility that a sea-state can be underestimated by taking too long sample
intervals.

In this presentation, we shall often assume that the route is known in advance. However, it is
also of interest to consider cases when only parts of a route are known (in extreme cases only points
A and B). The general formulas should address this possibility, since in reality the route cannot be
known exactly in advance because of uncertainty of such factors as sea conditions, captains actions,
etc.. The variability of the route could be modeled as a random path in (lo,la) coordinates between
A and B. In fact there exist programs that simulate the route of a ship and compute the time it
takes to advance along such a route, see Aalbers et al. (1996).

1.3. Response process – conditional Gaussian model. For a voyage, i.e. a vessel sailing along
a route, there are several responses that are of interest for the safety of the transport. Complete
ship’s response would be describe by a multivariate vector including such variables as sway, pitch,
roll, heave and so on. For simplicity, we will limit ourselves to a one-dimensional signal denoted by
X (t), where as before t is the time variable.

In order to be able to simplify the analysis we assume that the sea surface can be accurately
described by a Gaussian surface, with zero mean and a directional spectrum S(w; a). Furthermore
we shall approximate the ship’s movements (and other responses) by means of linear filters of the
sea elevation and the fact that the speed of the vessel is constant for a relatively long, compared
with wave periods, time. Under those assumptions the response X is a Gaussian process with some
mean (assumed to be zero only for simplicity) and some spectral density S(w). Both the mean
and spectral density depend on many geometrical factors, loadings, ship’s velocity (i.e. speed and
heading) and the sea spectrum. (See Appendix I, for introduction to Gaussian modeling of sea
surface and responses.)

The directional spectrum S(w; a) is needed for computation of the response spectrum and
hence it should be known at any time as the vessel advances along the path. In our approach, it will
be enough to know the sea-state j = (H s;T z;f), where as before H s is the significant wave height,
T z is the mean wave period, and f is the main wave direction.

ASSUMPTION I: A vessel encounters different sea states j(s), s 2 (0; S) on a route from A
to B. We assume that the sea-state parameters are constant in time intervals, which we call periods
of stationarity. These periods are include at least hundred of waves of the average duration, i.e.
they last at least a hundred of T z . This corresponds to approximately 20 minutes of measurements.
Often however, we assume them to last for two hours which corresponds to ca. 600 waves in time.
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In addition we assume that for a given voyage the probabilistic properties of the response depend
only on the value of sea-state parameters j and not on the position s of the vessel along the route.

If the second part of the assumption is violated, then the route should be divided into shorter
parts for which this assumption is satisfied. The interesting properties of responses can be studied
for each part and then combined.

For a given voyage (vessel, loading), during stationarity period DT (under the assumptions:
sea-state parameters are known, constant ship’s velocity, etc.) the response spectrum can be com-
puted by means of some dedicated computer software, e.g. VAC, see Aalberts et al. (1996). The
derived response power spectrum is denoted by Sj(w), the response variance by s2(j) and its mean
frequency, defined as the intensity of up-crossings by the response of its mean, by f (j). As a con-
sequence of Assumption I, the speed v(t) of a vessel at time t, is a function of a voyage and of
the present value of sea-state parameter j(t). Consequently, we can view the VAC software as a
function V , say,

(1) V (j(t)) = (s(t); f (t); v(t)); where j(t) = (H s(t);T z(t);f(t)):

These parameters of the response as the function of the sea-state are called short-term responses.
In the case when it is not possible to compute the short-term response, since, for example,

suitable software like VAC is not available, we can analyze a simplified response

(s; f ) =

�
H s

4
;

1
T z

�
;

and v(t) = v0, where v0 is a constant speed while we also assume that f = 0. This assumption
is not uncommon in the literature, see Lindemann (1986): “the loading effect may be assumed
proportional to the wave-height”. Then we represent the response X as an encountered sea elevation
level. In this simplified approach we do not consider the sea level measured from the moving vessel,
which would be possible since we know the constant speed v0. This allows to simplify the analysis
by avoiding consideration of the Doppler effect.

1.4. Distribution of response. Our purpose is now to define the distribution of response, i.e. the
generic quantity we denote by P(X > r). Since this probability can be interpreted in a variety of
non-equivalent ways, the used notation should be treated in a rather non-formal way. The precise
definitions will follow later. Here we will consider two important different interpretation for the
response X . First, we are interested in probabilities of exceedances of absolute tolerance limits
by the absolute maximum of the response process X (t) over the period of an entire voyage. This
distribution allows, for example, to determine chance of the complete damage of a ship during
long-term of exploration or, in the design stage, to construct a reliable ship serving a given sea.

The second meaning to the response X is the value of individual crest and we are interested
in the probability of exceedances of a threshold by such an individual crest. Thus X now has
the interpretation of the maximum of the response over the period of an individual wave. The
distribution this sort is used in fatigue analysis, where one short excursion above a critical threshold
not need be fatal but it only makes partial damage, e.g. a plastic deformation.

Intuitively, the difference between these two cases is similar to the problem of finding distri-
butions of global maximum and local maxima for the response during a voyage. In the first case
we have one observation per voyage in the second hundred thousands of local maxima (the highest,
which is the global maximum, included).

We begin with the definition of the probability of exceedance of a tolerance limit r by the
maximum response X during a voyage. Consider N voyages and define P(X > r) as the limiting
fraction of voyages for which the maximum response exceeds level r, as N tends to infinity, if such



DISTRIBUTIONS OF RESPONSES EXPERIENCED BY A VESSEL - A COMKISS REPORT 5

a limit exists. Then the probability P(X > r), can be written as follows. Let Xj(t), j = 1; : : : ;N ,
denote the response measured during the jth voyage, then

(2) P(X > r) = lim
N!1

1
N

NX
j=1

f max
t2[0;Tj]

Xj(t) > rg;

where Tj is the time of the jth voyage, f“condition”g denotes both the set and the indicator of
the set, i.e. it is defined to be one if the “condition” is true and zero otherwise. Observe that we
have not assumed that the sea-state or even the route connecting A with B is fixed – these could
vary between voyages. However, first we consider a special case called deterministic route, where
we assume that during all the voyages the vessel encounters exactly the same and known sea-state
process j(t).

This special case can be visualized through the model in which N identical vessels are expe-
riencing exactly the same sea states although in an independent way. For each vessel we record the
maximal wave height in the response process. The proportion of vessels for which the response X
exceeds at least once the level r is an estimate of the conditional probability of exceedance given
the sea-state process j(t). By the Law of Large Numbers, the limit (2) exists. In this situation the
limit is denoted by P(X > rjj(�)) we call it the conditional probability of excursion given that the
sea-state process is known.

In general the sea-state process j(t) is not fixed and varies between voyages. Simply it can
happen that some voyages are performed in good weather and some in stormy weather. For each
voyage the process j(�) is unknown, and surely differs from voyage to voyage, but we assume that
the random mechanism (weather, captain, etc.) that generates j(�) is ergodic (the Law of Averages
or the Law of Large Numbers are valid). In such case the limit P(X > r) does still exist and equals

P(X > r) = E[P(X > rjj(�))]:

Note that P(X > rjj(�)) is a random variable taking values between zero and one, where ran-
domness comes through the now random sea state process j(t). Our task is to find computable
expression for P(X > r) in the framework of some reasonable theoretical model. We will come
back to this question in the next section. In our opinion, when computing probabilities it is best
to use measurements and compute frequencies of occurrences of events of interest. However, if the
data are limited or not available (not each response in a vessel can be measured), then we need to
rely on mathematical modeling. Let us first illustrate such a situation by considering the so-called
k-voyage value.
Example 1. The k-voyage value is denoted by rk and often is used as a design value of a typical
“big” wave that can be encountered by a vessel during k voyages. It is defined as the value that, in
average, is exceeded once during k voyages. More precisely, if Yj(r) = fmax0�t�Tj Xj(t)g, where the
underlying voyage is random (the sea-state process j is random not fixed), then the expected value
EYj(r) = P(X > r) depends on r and rk is defined as the solution to the equation P(X > rk) = 1=k
so that E

Pk
j=1 Yj(rk) = 1 giving a reason for the above interpretation.

Our task is to estimate rk for, say, k = 100. Suppose that we have recorded the absolute
maxima in N = 100 voyages. Since we have 100 observations of the maximal response x1; : : : ; x100,
we can estimate r100 by max(x1; : : : ; x100), expecting that by the Law of Large Numbers r100 should
be approximately equal to the highest recorded value of of the extremal responses. However, if
N = 10 which is more realistic sample size and we wish to know the 100-voyages value r100, then we
are looking for a value that probably has not been observed. We need to resort to some more subtle
methods. For example, we could use the equation P(X > r100) = 0:01, under the assumption
that P(X > r) is a smooth function of r, and hence the observed part of P(X > r) (the empirical
cumulative distribution function of the observed maximal values in 10 voyages) can be extrapolated
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to higher, unobserved values by some smoothing estimation techniques. Here the extreme value
theory is particularly useful providing the appropriate tail behavior of the distributions, and we
refer to two books Aage et al. (1999), containing oceanographic application, and Leadbetter et al.
(1983) which is a monograph on these topics.

The second problem in which we deal with the distribution of the response in a different
context is the distribution of crest heights. To avoid the confusion with the previous problem
we use now a generic Ac for the individual crest height (amplitude).The whole problem can be
defined in a similar way as before. First we will introduce the concept of “oscillations of a response
encountered during a voyage”. Oscillations are defined as apparent waves observed in the response:
for a fixed reference level m, define an oscillation as the part of the signal between two consecutive
up-crossings of m.

Now assume that one is recording the individual heights of oscillations that a vessel has
encountered during each of N voyages. The values are presented in the form of an empirical
distribution. That is for any level h one finds the fraction of oscillations with crests below h. Again
by invoking the Law of Averages we expect that the fraction converges to a probability distribution
function, as N tends to infinity. Denote by Ac a random variable having this distribution. Then
the variable Ac represents the variability of crest heights during a voyage.

Using mathematical notation, the exceedance probability P(Ac > h) is defined as follows.
As before, consider N voyages. For each voyage estimate the empirical exceedance probability of
P(Ac

j > h). Then P(Ac > h) is the limiting value of the average of P(Ac
j > h), if such limit exists,

i.e.

P(Ac
> h) = lim

N!1

1
N

NX
j=1

P(Ac
j > h):

As before we can also define the distribution of Ac conditionally on the value of sea-state process
during a voyage, i.e. P(Ac

j > hjj(t)).

2. CONDITIONAL PROBABILITIES P(�jj(�)) – DETERMINISTIC ROUTE

In this section we assume that the random variability in experienced maximal wave height
is only caused by the random variability of sea surface (waves) under deterministic sea conditions.
Thus all probabilities considered in this section are conditional probabilities given the sea-state
process j(t).

2.1. Some definitions and assumptions. Because we assume that the sea-state process is slowly
varying, we can consider the response X (t) to be stationary in relatively short time intervals. Thus
we call stationary portions of X (t) short term responses. More formally, if the sea-state is a con-
stant function of time j(t) = j, then the resulting response will be a stationary response which
corresponds to the short time response over the time interval in which any other sea-state (not
necessarily constant) j(�) is approximately equal to j. For short term responses our problems are
reduced to the extreme value theory of stationary processes on which there is an extensive literature
[see, for example, the monograph Leadbetter, Lindgren, and Rootzén (1983)].

In the following we introduce some measures for properties along the route, called also long-
term responses which are mixtures of the short term responses. The mixing factors are sometimes
called wave climate along the route.

We begin with two general assumptions.

ASSUMPTION II: During a stationarity period the reference level will be chosen as the
level which is most frequently crossed and we assume that this level does not change between the
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different stationary sea conditions encountered by a vessel. This common reference level is denoted
by m, and for simplicity only, we assume that m = 0.

In order to derive approximations for P(X > rjj(�)) and P(Ac > hj(�)), we will use the prop-
erties of crossings of levels r, and h, respectively. Denote by N (r) the number of times the response
X (t) crosses upwards the level r during a voyage. Obviously N (r) depends also on the encountered
sea-states j(�), but for notational convenience we do not write explicitly this dependence.

Let us also introduce an additional concept of the crossing intensity under a sea-state j,
denoted by m(r; j) and which is the number of crossings per time unit. More precisely, if during the
whole voyage one had the same sea conditions j, then E[N (r)jj] = Tm(r; j) and m(0; j) = f (j).

Since the reference level is m = 0, the number of oscillations is equal to N (0). If the sea-state
process j(t) = (H s(t);T z(t);f(t)) is known, then for a given function V , see (1), one can compute
the mean frequency from

(3) f̂ =
1
T

Z t0+T

t0

f (j(t)) dt:

Using the crossing intensity, the expected number of crossings during a voyage can be ob-
tained from the following mixture

(4) E[N (r)] =
Z t0+T

t0

m(r; j(t)) dt:

For a long voyage, integration over time may not be practical and hence one can rewrite the
formula by introducing the distribution of sea-state along the route. Let J be a random variable
having the following distribution

(5) P(J 2 A) =
1
T

Z t0+T

t0

ft : j(t) 2 Ag dt;

i.e. the fraction of time sea-state spends in the set A. Here ft : j(t) 2 Ag is an indicator function
which is equal to one for these t for which the condition in the brackets is satisfied and zero
otherwise. Using the introduced variable J, the expected number of up-crossings can be written in
a compact form

(6) E[N (r)] = TE[m(r;J)] = T
Z

m(r; j)p(j) dj;

where pj(�)(j) is the probability density function (pdf ) of the distribution given by (5) that measures
the time a vessel is exposed to the sea-state parameters j. In Section 4 we give methods to estimate
pj(�)(j), the so-called exposure time density.

Consequently, the mean frequency f̂ is given also by

f̂ = E[f (J)jj(�)] =
Z

f (j)pj(�)(j) dj:

Next, we will introduce another probability density

(7) qj(�)(j) =
f (j)

f̂
pj(�)(j)

that measures the intensity of oscillations a vessel encounters while being in a sea-state j. The
function qj(�)(j) will be called oscillations density function. Let us denote by ~J a generic random
variable that has qj(�)(j) as its pdf. This variable will be applied when the distribution of oscillation
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crest heights is approximated. More precisely, in the following subsection we shall use the following
normalized crossing intensity

(8)
E[N (r)]
E[N (0)]

=

Z
m(r; j)
m(0; j)

f (j)

f̂
p(j) dj =

Z
m(r; j)
m(0; j)

q(j) dj = E

"
m(r; ~J)

m(0; ~J)

#
:

We finish with the third and last assumption that we impose on the response process. That is,
unimodality of crossing intensity as function of r, which implies that 1� E[ m(r; ~J)

m(0; ~J)
] is a distribution

function, often used as an approximation of P(Ac < rjj(�)) (see the following subsection).

ASSUMPTION III: Assume that under stationary conditions, i.e. for any j, the crossing
intensity m(r; j) has only one local maximum (at r = 0).

Under this assumption, E[N (r)] has also only one maximum. The last assumption is reason-
able in the case of linear responses driven by ocean waves.
Remark 1. For a deterministic route and sea-state parameters j(t) = (H s(t);T z(t);f(t)) along
a given path, both pj(�)(j) and qj(�)(j) are probability density functions. The random variables
having these densities were denoted by J, ~J, respectively. They have a very natural interpretation
despite the fact that they seem so artificial. The variable J tells us what is the value of sea-state process
at randomly chosen time points during the deterministic voyage, while ~J tells us the value of sea-state
parameter at a randomly chosen oscillation. Obviously both variables are functions of the fixed sea-
state process j(�), which we could be written more explicitly as Jjj(�) and ~Jjj(�). In the general
case when the sea-state and the route are random, the wave climate along the route will be described
by the unconditional variables J, ~J.

2.2. The height of the crest of an oscillation. If the sea state parameters during a voyage are
constant and equal j, we shall denote the random crest height by Ac(j). Assuming that one can
find the distributions for Ac(j), then, after some derivations, we obtain that

P(Ac
> hjj(�)) = P(Ac( ~J) > hjj(�)) =

Z
P(Ac(j) > h)qj(�)(j) dj;

where qj(�)(j) is the pdf of ~J, and has to be estimated. We will try to accomplish this by using
satellite data.

If measurements are available one can fit some parametric distribution. Gran (1990) discusses
several families of suitable distributions that could be applied for P(Ac(j) > h) and qj(�)(j).

Theoretical derivation of the density of Ac(j) using the model of the response X (t), is an
extremely difficult problem and hence some approximation methods are of interest.

2.2.1. Rayleigh model. For Gaussian responses one is often approximating Ac(j) by a standard
Rayleigh distributed variable R

P(Ac(j) > h) = P(s(j)R > h) = e�
h2

2s(j)2 ;

where s(j)2 is the variance of the response X (u), see formula (1). It is well known that this is
an accurate approximation for narrow band spectra. However as it was discussed in Rychlik and
Leadbetter (1997), the Rayleigh approximation is accurate for distributions of Ac(j) for high h
levels, even for broad band spectra. More generally it was shown that for any response X (t),

(9) P(Ac
> h) �

E[N (h)]
E[N (0)]

:
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The inequality is usually “very” sharp for high values of h. Thus, for stationary periods of constant
sea-state and if the response is Gaussian. we have

P(Ac(j) > h) �
m(h; j)
m(0; j)

= e�
h2

2s(j)2 :

2.2.2. Approximation based on crossing intensities. It is well known that crests of high but narrow
waves are slightly higher than the Gaussian model would predict. This is also seen in the crossing
intensity m(h; j), for j corresponding to higher significant wave heights.

Now, if m(h; j) is known, then by using (9) and Assumptions II and III, we can directly check
that

F (r; j) = 1�
m(r; j)
m(0; j)

; F (r) =
Z

F (r; j)q(j) dj;

are distribution functions. Since F (r; j) is increasing, F (0; j) = 0 and F (+1; j) = 1, we also
have,

F (r) = 1�
E[N (r)]
E[N (0)]

; r � 0:

Thus the relation
P(Ac(j) > h) � 1� F (h; j);

provides with a conservative bound for the distribution of Ac(j), which can be useful since we are
interested in safety applications.

Clearly the problem is how to estimate the crossing intensity function m(h; j). One could
fit some parametric distribution functions to the intensities, using measurements at fixed locations.
This approach is still under investigation. One could argue that if we are going to use observations
why not then use some of the parametric distributions proposed in the literature, [see, for example,
Gran (1990)]? The answer to this is that analysis based on crossings is much simpler than the study
of crests of apparent waves. Particularly, if the non Gaussian model for the response is specified,
then one can compute the crossing intensity by means of Rice formula

m(h; j) =
Z +1

0
zfX 0(0);X (0)(z; h) dz:

For example, for second order nonlinear waves the crossing intensity has been computed in Machado
(2000).

2.2.3. Transformed Rayleigh model. For Gaussian seas the Rayleigh approximation for the crest
height is commonly used. For slightly non-Gaussian responses one can express the crest height as
a transformed Rayleigh variable. We will use this representation while computing fatigue damage
from rainflow cycles.

Relying on the assumption that the reference level is constant and the crossing intensities are
unimodal, it can be proved that there is a unique increasing function g, g(0) = 0, with an inverse
function G = g�1, such that P(Ac(j) > h) � P(G(R; j) > h). The function g is defined by

(10) g(r; j) =

� p
�2 ln(m(r; j)=m(0; j)); if r � 0;

�
p
�2 ln(m(r; j)=m(0; j)); if r < 0:

Consequently, we have that

P(Ac
> h) � E[e�g(h; ~J)2

=2] =
Z

e�g(h;j)2
=2q(j) dj =

Z
e�

g(h;j)2�2 ln(q(j))
2 dj:

The last integral has to be computed numerically. To do so, quite often, one uses the so called
saddle point method, which is a particularly accurate method for high h values.
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The approach is as follows, see Gran (1992) for details: 1) check for a fixed h if the function
f (j) = g(h; j)2=2 � ln(q(j)) has a local minimum at j = j0, say. Then, use Taylor series for a
quadratic approximation of f around the point j = j0 . Then the integral looks like the integral
of a Gaussian density and can be computed explicitly;Z

e�f (j) dj � e�f (j0)

Z
e�

1
2 (j�j0)[f 00(j0)](j�j0)T

dj = (2p)3=2det[f 00(j0)]1=2e�f (j0)
;

under the assumption that [f 00(j0)] is a positive definite matrix.

2.3. The distribution of rainflow cycles. We turn now to the fatigue caused by the load oscilla-
tions and in particular to the study of rainflow cycle distribution. We shall not go into details on
how to compute the rainflow cycles amplitude distribution, but concentrate rather on the properties
of accumulated damage that is E[Db (t)].

By Assumptions II, III, the expected damage accumulated in the time interval (0; t), under
stationary conditions defined by j, can be bounded as follows

E[Db (t)] � Tf (j)E[(G(R; j)� G(�R; j))b ];

where R is a standard Gaussian variable and G is the inverse of g, defined by (10), see Rychlik and
Leadbetter (1997) for a detailed discussion on how the bound is derived. In the special case of
Gaussian responses we have

E[Db (t)] � Tf (j)E[(2s(j)R)b] = Tf (j)s(j)b 2b=2
G (
b

2
+ 1):

The parameters f (j) and s(j) are important in order to perform a crude analysis of the damage
intensity of the response. The mean frequency indicates a rate of bigger cycles while s(j) is the
scaling factor for amplitudes. (Observe that in some special cases, when b = 1 or as b goes to
infinity, the method is exact).

Now, under Assumptions I, II and III, we have that the stationarity periods are relatively long,
and since the most frequently crossed level is constant, then the rainflow cycles associated with sea
state variation are of the same order as the cycles within the stationarity periods and hence can be
neglected. This leads to the following approximation

E[Db (t)] � T f̂ E[(G(R; ~J)�G(�R; ~J))b ] = T f̂
Z Z

E[(G(r; j)�G(�r; j))b]re�
r2

2 q(j) dr dj:

For the Gaussian case the formula reduces to

E[Db (t)] � T f̂ 2b=2
G (
b

2
+ 1)

Z
s(j)bq(j) dj:

Observe that for any response satisfying Assumptions II and III we can write that

E[Db (t)] � f̂
Z

E[(G(R)� G(�R))b ]q(j) dj;

where the inverse function g is defined by (10) with m(r; j) replaced by E[N (r)].
Finally, if Assumptions I and II are violated, then the method based on crossings may become

too conservative. If more accurate predictions of fatigue life are needed, then more detailed models
have to be developed for the sequence of load cycles. Here the Markov chain theory has shown to
be particularly useful. There are two reasons for this:

� the Markov models constitute a broad class of processes that can accurately model many
real loads,

� for Markov models, the fatigue damage prediction using rainflow method is particularly
simple, Rychlik (1988) and Johannesson (1999).
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In the simplest case, the necessary information is the intensity of pairs of local maxima and the
following minima (the so-called Markov matrix or min-max matrix). The dependence between
other extremes is modeled using Markov chains, see Frendahl & Rychlik (1993).

2.4. Poisson approximation for the number of exceedances. The following approach is some-
times called the Rice method and is based on the fact that crossings of high levels can often be very
accurately modeled by a clustered Poisson process.

Assume that X (t0) < r, i.e. we are not starting with an extreme response, then

P(X > r) = P(max
t2T

X (t) > r) = P(N (r) > 0) � E[N (r)]:

The last upper bound is close to the accurate value for very high levels under the assumption that
crossings are not clustering, i.e. a crossing of a high level is not directly followed by another crossing.
However, if up-crossings are always coming in pairs (cluster of two), then we could improve the
inequality by P(N (r) > 0) � 0:5 � E[N (r)].

It is a well known result for stationary processes, see Leadbetter et al. (1983), that under
mild assumptions the up-crossings of high levels behave asymptotically as a clustered Poisson point
process. From this it follows that for high levels of r

(11) P(X > r) = 1� P(N (r) = 0jj(�)) � 1� e�lE [N (r)jj(�)]
;

where l, 0 < l � 1, the so-called extremal index is the inverse of the average size of clusters of high
maxima.

Let us make several remarks.

� For responses during stationary periods defined by j we will use l = 1. This is cor-
rect when the response is Gaussian. Even if for narrow band spectra waves are coming in
groups, asymptotically the extreme waves are not clustering. However, for the Poisson ap-
proximation to be accurate for a narrow band sea the finite level need to be taken relatively
high. On the other hand during storms the sea is not narrow band so the clustering is not
occuring and the quality of approximation is rather good.

� Another problem can be that some responses are non-Gaussian, for example in the case of
slamming. This is an important problem but we will not consider such effects here.

� A voyage is a mixture of stationary periods and hence one can ask if the method will work
for the whole route. Obviously, for some sea-states j, the chosen threshold r is high enough
so that the use of Poisson approximation is well motivated, while it may not be for other
encountered sea-states. A pragmatic answer to this question is that the quality of approx-
imation increases as the level r, or the duration of the worst sea-state encountered, in-
creases. More precisely, if the worst sea-state lasts for ca. 20 minutes the levels r such
that P(X > r) � 0:2, are well approximated. If the time increases from 20 minutes to
two hours, then the same levels will have the probabilities of exceedance increased, so that
P(X > r) � 2=3 (ca.), see the following remark for more detailed analysis.

� Here we present some simple analysis of validity of Poisson approximation. For simplicity
assume that the response X is just the sea surface elevation and let j(t) be the history of
the sea-states encountered during a voyage. Let H s

0 denote the highest significant wave
height, encountered by a vessel. We assume that the sea is Gaussian, duration of a sea-state
is ca. 20 minutes and the average wave period 12 seconds. Consider a level u, say, that is
3.5 standard deviations, i.e. 0:875 � H s

0. (Such level u is high enough so that the Poisson
approximation for the exceedance probability can be used). For the period of 20 minutes
the expected number of up-crossings of the level u is E[N (u)] � 0:22, and the probability
that the maximum exceeds u is ca. 0.2. It is important to notice that if we assume that
the sea was calm when H s(t) < 0:6 � H s

0, then we are underestimating the E[N (u)] by at
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most 0.006, in a 20 day period. The similar analysis for H s(t) < 0:5 �H s(t0) gives value of
underestimation 3:3 � 10�6.

The conclusion is that if we are interested in the probabilities P(X > r) less than 0.2, then
one can neglect all the sea-states having significant wave-height H s < 0:67 �H s

0. The period of 20
minutes is quite short, but if the spectrum of the sea is not extremely narrow banded then the level
u can be decreased to 0:75H s

0 with approximative exceedance probability 2/3 and so we expand the
region of applicability of Poisson approximation.

In the above analysis we have assumed that the storm was “box”-shaped which corresponds
to stationary periods of sea under the extreme weather conditions. This assumption is somehow
idealistic. Therefore it is interesting to consider other models of storms. If we perform the same
analysis under the assumption that the storm was shaped like a parabola then we get E[N (u)] �
0:1576, and the probability that the maximum exceeds u is approximately 0.1458. We can see
that the corresponding values are smaller, something that was expected since we haven’t change the
storm duration.(see picture the parabola is inside the box). Again it is important to notice that if
we consider the sea to be calm for H s(t) < 0:6 �H s

0 then we underestimate the E[N (u)] by 0.0025
which decreases to 1:181 � 10�6 when the above assumption is made for H s(t) < 0:5 �H s

0:
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Figure 1: Comparison of “box”-shape and parabola storms.

When one is discussing the so called k voyage values, with k = 10, say, then the level u
should be around 4.2 standard deviations high. In such case we can neglect all the sea-states for
which H s(t) < 0:7 � H s

0. (Higher k-voyage values will further limit the number of sea states that
need to be considered.)

The general conclusion is that, if we are interested in exceedance probabilities P(X > r) , for
Gaussian responses, 0.25 or smaller, then the Rice method is working very accurately, and we need
to compute E[N (u)] for sea-states that are at least 0.6 as serious as the worst case. Unfortunately,
so exact bounds can not be given for non-Gaussian responses.

2.5. Evaluation of Poisson approximation for P(X > r). Obviously in order to make further
computations we need to model the shape of E[N (r)] as a function of r. We shall mention here
some possible approaches and relate them to standard methods used in the oceanografic literature.



DISTRIBUTIONS OF RESPONSES EXPERIENCED BY A VESSEL - A COMKISS REPORT 13

� The first approach is to consider the distribution of encountered crest heights during a
voyage P(Ac > r). Then

P(X > r) � 1� e�T f̂ (E [N (r)]=E [N (0)])
= 1� e�T f̂ (1�F (r)) � 1� e�T f̂ P(Ac

>r)
:

This is just one of the approaches taken in oceanographic literature. For example following
Lindemann: “The maximum encountered during N wave cycles (in our formula N = T f̂ )
will itself exhibit an extreme value distribution. For the long term distribution of waves,
the extreme value distribution will suffice

P(Hmax) = e�e�(h(Hmax )�h0(N ))
; :::”

By taking P(Ac > r) = exp(�h(r)) we have calibrated the formulas. However there is one
important difference. In the last formula one needs to analyze the distributions of crest
heights which is a nontrivial problem. Several approximations are needed. Our approach
is more direct since it is relying on a more basic concept of crossings, see the discussion on
computation of P(Ac > r), given in the previous subsection.

� Another possibility is again to consider that the voyage is a mixture of periods of stationarity.
Then

P(X > r) � 1� e�T f̂ (E [N (r)]=E [N (0)])
= 1� e�T f̂

R
m(r;j)
m(0;j) q(j) dj � 1� e�T f̂

R
P(Ac(j)>r)q(j) dj

:

Again a saddle point method could be used to evaluate the integral. The method is of
interest when we have models for the response during stationary periods. If the mixture
density q(j) is available then the exceedance probability could be computed approximately.

� Clearly, the drawback of the cases discussed above, is that one needs to have information on
either E[N (r)] or m(r; j) for values of r higher than those available in the data. This is not
a problem if we have mathematical models for the responses, but if not, then one needs to
fit some parametric distribution. The fit should be more accurate for high values of r and
hence one may directly concentrate to this region, which leads us to the techniques called
peak over threshold POT.

P(X > r) � 1� e�T f̂ (E [N (u)]=E [N (0)])(E [N (r)]=E [N (u)]) � 1� e�T f̂ P(Ac
>u)P(Ac

>rjAc
>u)

; r > u;

Since Ac is a mixture of different sea states, it is sometimes easier to find a suitable family of
parametric distributions. Consequently one can use

P(X > r) � 1� e�E [N (u)]
R

m(r;j)
E[N (u)] p(j) dj

= 1� e�E [N (u)]
R

m(r;j)
m(u;j) qu(j) dj

; r > u;

where qu(j) =
m(u;j)

E [m(u;J)]p(j). Obviously both m(r;j)
m(u;j) and qu(j) have to be computed or

estimated. One possible simplification is to assume that responses for different stationary
conditions have crossing intensities that differ only by some scale parameters, i.e. standard
deviation s(j) and that there is a random variable Y such that Ac(j) = s(j)Y . Then

m(r; j)
m(u; j)

�
P(Ac(j) > r)
P(Ac(j) > u)

=
P(s(j)Y > r)
P(s(j)Y > u)

:

If Y is distributed according to a generalized Pareto distribution, which is a natural assump-
tion for high u values, then

m(r; j)
m(u; j)

�
�

1� k
r � u
cs(j)

�1=k

:

The scale parameter c and the shape parameters k need to be estimated.
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We shall now make some numerical experiment in the case of Gaussian responses. Then
the Pareto shape parameter k = 0, i.e. Y is exponentially distributed and we have

P(X > r) � 1� e�E [N (u)]e
�

r2
�u2

2s(j)2 � 1� e�E [N (u)]e
�

r�u
s(j)2=u

;

where the first approximation is the Poisson approximation and the second is the Pareto
model. As before the accuracy of the second approximation is improving with increasing u
level. However, if the parameters of the Pareto distribution have to be estimated then the
level u can not be too high. Consider the same example of 20 minutes worst storm with
significant wave height H s

0 and average period 12 seconds. Let us choose the level u to be
three standard deviations high, then E[N (u)] = 1:1 (we have in average one up-crossing of
the level), then for k = 10 voyage the Pareto model gives r10 = 0:945H s

0, while the Poisson
approximation gives slightly lower value r10 = 0:925H s

0. Both values seem to be very close,
however we are in the tail of the distribution and the value 0:945H s

0 exceeds one in average
in 13 voyages and not in 10.

� Another possibility is to follow the approach given in Leadbetter et al. (1983), then

P(X > r) � 1� e�e
�aT ( r

s(j)�bT )

;

where aT =
p

2 log(T ) and bT =
p

2 log(T ) +
log(
p

f (j))p
2 log(T )

. We consider again the same

example as before of 20 minutes worst storm with significant wave height H s
0 and average

period 12 seconds. If we assume as above the level u to be three standard deviations high,
then for k = 10 then the model for extremes of Gaussian responses gives r10 = 0:9463H s

0.

We can apply the above consideration to find approximations of the k-voyage value. Under
the assumption that the high excursions do not cluster, P(X > rk) �= 1 � exp(�E[N (rk)]). Con-
sequently rk is a solution to the equation E[N (rk)] = � ln(1 � 1=k) � 1=k. Observe that one
could define rk as a level that exceeds only once during k voyages (there is in average one wave that
is higher than the level rk). Then the level rk is a solution to the equation kE[N (rk)] = 1. Here we
are assuming that the level rk is high, so that at least for Gaussian seas, there is only one up-crossing
of the level rk per wave that exceeds the level. Consequently, both approaches give approximately
the same value for rk, if voyage is long and if one is interested in large number k.

2.6. Computation of p(j) and connecting different routes. In Assumption I, we require that the
properties of the response on the route AB depend only on some parameters individual for a ship
(loading, geometry etc.) and only on sea state parameters j. Let divide the route AB into K routes
denoted by Bk�1Bk, k = 1; : : : ;K and B0 � A. We assume that the exposure time densities pk(j)
and the total time that the voyage on the route Bk�1Bk, Tk have been found. Then the exposure
time density p(j) for the route AB is given by

p(j) =
KX

k=1

Tkpk(j)
T

;

where T =
PK

k=1 Tk. The last formula can be used to compute p(j). More precisely, one can
choose K large enough to assume that on the routes Bk�1Bk, j(t) � jk. Denote by sk the length
of the route Bk�1Bk. Since we assumed that the speed depends only on the value of the sea-state
parameter j, i.e. it is given by a function v(j), then using for example kernel h(x) with bandwidth
d , the function p can be estimated by

p(j) �
KX

k=1

Tk h((j� jk)=d )=d
T

=

KX
k=1

sk
v(jk ) h((j� jk)=d )=dPK

k=1 sk=v(jk)
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Now let us consider the case that each sub route satisfies Assumption I, but the function V ,
see equation (1) is different for different sub routes (that is, the route AB does not satisfy Assump-
tion I). Then the properties of the response depend on the position along the route and hence there
is no meaning in computing the exposure density for AB. In such cases one needs to approximate
each of the k exceedance probabilities P(Xk > r), separately. Now we turn to computation of the
exceedance probability P(X > r) for AB composed of the K routes Bk�1Bk. Here the important
assumption is that the route j(t) is known, i.e. deterministic. Then, by Assumption I, stationarity
periods are long and hence we can assume that maximal responses encountered on routes Bk�1Bk

are independent. (Observe that this not need to not be correct if j(t) is a random process.) Then

P(X > r) = 1� (1� P(X1 > r)) � : : : � (1� P(XK > r)):

Obviously we have max P(Xk > r) � P(max Xk > r) �
PK

k=1 P(Xk > r).
We turn now to the distribution of oscillations amplitudes, and let Ac

k be the maximum height
encountered during path k. Let f̂k be the mean frequency for the voyage k, then the distribution of
oscillations amplitude can be computed as follows

P(Ac
> h) =

KX
k=1

Tkf̂kP(Ac
k > h)

T � f̂
;

where f̂ =
PK

k=1
Tkf̂k
T .

3. RANDOM SEA-STATE PROCESS j(t)

In Section 1.4, we defined the distribution of response under the general assumptions of an
ergodic sea-state process. We also saw that in that case the time averages of functionals converge.
Under these assumptions the probabilities P(X > r) and P(Ac > h), are well defined. We shall now
discuss some aspects of computations of these probabilities.

In order to make the assumption of ergodicity more believable, we may assume that voyages
start during a limited period of time and are not too long, so the weather system can be assumed to
be time stationary and homogeneous over big regions of the sea. We also assume that the captain
changes route on the basis of weather conditions and experience. For example voyages start in
January and take 20 days.

A warning is in place here. We have only the old data available and we wish to predict the
future. So everything is based on the assumption that either the future will be just like the past or
it can be accurately predicted based on ergodicity. Of course here one could ask about the climate
variation since there are some indications that storms get worst in the last decades, see Carter
(1999). So, should we assume that voyages are performed in a limited period of time, or should we
include trends in the climate evolution?

In Section 2 we discussed the case of conditional probabilities P(�jj(�)), where the sea-state
process is known. Obviously, the probabilities P(X > r) and P(Ac > h) can been computed by
means of

P(X > r) = E[P(X > rjj(�))]; and P(Ac
> h) = E[P(Ac

> hjj(�))]:

3.1. The oscillation heights distribution P(Ac > h). We begin with the second probability,
which is somewhat easier to analyze. We have

(12) P(Ac
> h) = E[

Z
P(Ac(j) > h)q(j) dj] = P(Ac( ~J) > h);
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where here the variable ~J has another pdf than in Section 2.2. Simply it is the average of q(j)
over performed voyages. If one discretizes the possible sea-state parameters into N sea possible com-
binations, then the method used in VAC is just the computation of formula (12), see the following
remark.

The presented method also solves the fatigue problem, if only the average fatigue damage,
E[p(j)], can be computed.

If one wishes to investigate also the variability of the damage, then one needs to know the
variance of P(Ac > hjj(�)) for different voyages, which means that we need E[N (r)2], which is a
much harder problem.

Remark: Often in practice, one is discretizing values of sea-state parameters and hence one
has only N sea, say, different combinations of values. If i is an index numerating the allowed com-
binations, then we will say that we have the sea-state no. i and we replace in notation j by i. In
Aalbers et al (1996), the formula for P(Ac > r) is given, see formula (2). Using the notation of this
paper, and considering only one stationarity region, the formula (2) can be written as follows

P(Ac
> r) =

Z
q(j)e�

r2

2s2(j) dj =
N seaX
i=1

pi

�N � T z
i

e
� r2

2s2
i

where �N is defined by formula (3) and is equal to the average number of oscillations per second in
a stationarity period.

The computation of E[p(j)] and E[q(j)] is not so obvious if we allow routes to vary, but for
a fixed route it is just a reformulation of the VAC approach.

There are several methods discussed in Section 2.2 to compute the conditional probabil-
ity P(Ac > hjj(�)) any of those can be used here. We just conclude that mostly those methods
are based on different ways of computing the conditional expectation of up-crossings of level h,
E[N (h)jj(�))]. Consequently in order to compute P(Ac > h) we need to compute the uncondi-
tional expectation E[N (h)] = E[E[N (h)jj(�))]]. We shall next discuss the case of exceedance prob-
ability P(X > r), which is a more complicated case. Clearly, we still have P(X > r) � E[N (r)],
but this bound can be very conservative if there is a tendency of clustering of storms.

3.2. The exceedance distribution P(X > r). Under assumptions of ergodicity and using the
Poisson approximation for P(X > rjj(�)), see Section 2.4, we have

P(X > r) = E[P(X > rjj(�))] � 1� E[exp(�E[N (r)jj(�)])]:

In the previous section we have sketched how to compute the conditional expectation E[N (r)jj(�)],
that is the expected number of up-crossings of the level r given that the sea-state process is known.
Obviously E[N (r)jj(�)] is a random variable having a distribution that we do not really know
how to compute. In the previous subsection we needed only to compute E[N (r)], here this is not
enough, since

P(X > r) �= 1�E[exp(�E[N (r)jj(�)])] = E[E[N (r)]]�
E[E[N (r)]2]

2
+

E[E[N (r)]3]
3

�
E[E[N (r)]3]

6
; : : : :

so we need all moments of E[N (r)]. Obviously, for high levels of r we need to compute only
first, second and maybe third term of the series, in order to obtain sufficient accuracy. Note that by
taking only the first term we have an upper bound to the probability, including second term a lower
bound, etc. So the accuracy of the approximation can be controlled. Another possible approach is
based on the formula

E[N (r) j j(�)] =
Z

m(r; j)p(j) dj:
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Obviously, the density p(j) is a function of sea-state process j(�). We have a good chance to
compute the expectation E[p(j)]. Then one could model variability of p(j), i.e. multinomial
probability function or Gaussian and Poisson.

The most straight forward approach is to get the distribution of E[N (r)jj(�)] by means of
Monte Carlo simulation, probably using the following formula

E[N (r)jj(�)] =
Z t0+T

t0

m(r; j(t)) dt:

(Clearly here T is a function of j(�).) Since we are interested mostly in high values of r we need
to design a suitable algorithm for it. Especially since, as we have discussed in Section 2.4, the value
of E[N (r)jj(�)] depends mostly on the duration of the worst storm (corrected by storms that are
above half or more of the strength of the worst one).

We finish with a simple example.
Example: Assume that a voyage takes 20 days and only two sea-states are possible; the calm

sea and the stormy sea with significant wave height 4 meters. Assume that the storms along the
route can be described by means of a Poisson process with intensity one per two days and that each
storm lasts for exactly two hours. We let the mean wave period f during a storm to be 14 seconds.
Now let the response X be just the sea level elevation and the critical level x � 4 meters. If we
denote by J the number of storms encountered by a vessel and by T the storm duration, then

P(X > x) � 1� E[exp(�E[N (x)jj(�)])] = 1� E[exp(�TfJ exp(�x2
=2))]

= 1� exp(�E[J ](1� exp(�Tf exp(�x2
=2))):

If the number of up-crossings during a single storm is small, then

1� exp(�Tf exp(�x2
=2)) � Tf exp(�x2

=2)

and we have that

P(X > x) � 1� exp(�E[N (x)]) = 1� E[J ] exp(�Tf exp(�x2
=2)):

For x = 4 this approximation gives the value 0.82, compare to the theoretical 0.79. Increasing level
to x = 5 = 1:25H s, the approximation gives value 0.0019 which is exactly equal to the theoretical
one.

For x = 4 = H s the method based on the approximation

E[N (x)]� E[N (x)2]=2 � P(X > x) � E[N (x)]

is not accurate, while for x = 5 we have that E[N (x)] � E[N (x)2]=2 = 0:019, that is we get the
correct value. Clearly the last method works if J � 514 exp(�x2=2) is small.

Let X (t) be a stationary Gaussian process. The probability values considered above were
exclusively estimated under the assumption that the storm was “box”-shaped. That is, the storm
should have constant significant wave height and average wave period over a well-defined time
and all wave amplitudes should be Rayleigh- or Rice- distributed with the same parameters. In
the following we assume that the significant wave height follows a log-normal distribution, that
is lnHu(s) is normally distributed. A convenient analytical model for the sea state behavior as a
function of time is

H (t) =
H0p

1 + ( t
t
)2
;

where t is the half storm duration parameter and H0 is the storm maximum that occurs at t = 0.
It can be proved that

H0 = exp(u +
s2

ln(H )R
2

2u
):
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in reason for using such a model is that we get nice closed formulas for the probabilities of ex-
ceedance. Moreover by using the more general

H (t) =
H0p

1 + ( t
t
)s

we can even model the sea-state evolution at a location during and after a storm of limited duration.
This, more peaked storm profile, exhibits a discontinuity and a merely linear rise and fall about the
maximum sea-state. As shown in the picture (here we can put the picture of the formula for different
s values) this storm has the advantage of being fitted to non-stationary storm profiles of different
forms. It also covers the statioanery “box”-shape profile for very large values of s. This model can
even be extended to the case of non symmetric storm waves by choosing different values for s before
and after the maximum.
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Figure 2: Different storms for different s values.

It is also interesting here to note that the storm duration t, is in general equal to the time
needed for the significant wave height to fall from H0 to 0:707H0. In general, it is a matter of
uncertainty which values should be used for H0 and t. A simplified theoretical approach would be
the use of the sequence lnHu(s), under the assumption of normality.

It can be proved that the distribution of the process X (t) time s after u up-crossings is the
same as the distribution of the variable

Xu(s) = exp(�2u(pf0)2s2
+
s2

lnH

2u
R2

+ u)

where

f0 =
1

2p
slnH 0

slnH
:

and R is a Rayleigh distributed variable for large values of u, that is for u � 4slnH , or more.
Now by taking a Taylor series expansion we can get for the height of the first local maximum

Hu(s) = eu+
s

2
lnH R2

2u � 2u(pf0)2s2eu+
s

2
lnH R2

2u ;



DISTRIBUTIONS OF RESPONSES EXPERIENCED BY A VESSEL - A COMKISS REPORT 19

since for large u the random parabola is dominating the behavior of Xu(s). Therefore,

Hu(s) = H0(1� u
s2

lnH 0

s2
lnH

s2

2
):

After some simple but tedious arithmetic we can find that

t =
1

2pf0
p

u
:

Then the above formula simplifies to

Hu(s) �=
H0p

1 + s2(2pf0)2
:

To get back to the problem of evaluating the exceedance probability, let us assume that a
voyage consists of only two different sea-states; the calm sea and the stormy sea. Here we assume
that we can describe the stormy sea by a parabola. For simplicity we also assume that all storms are
identical and also that the storms along the route can be described by means of a Poisson process.
If we denote by J the number of storms encountered by a vessel, then

P(X > x) � 1� E[exp(�E[N (x)jj(�)])] = 1� exp
�

E[J ]t
f (j0)

f0

1
p

2p

1
4x

E
�

H0(i)e
�8x2

H0(i)2

��
under the additional assumption of indepedance between J and R (Rayleigh distribution at up-
crossings) as well as the independence between the H0(i); for i = 1; 2; ::; E[J ]

In order to evaluate

E
�

H0(i)e
�8x2

H0(i)2

�
;

we are going to use the “saddle point” method.

P(X > x) � 1� exp(E[J ]2t
f (j0)

f0

p
p

2

u2

x2

1
s4

lnH

exp(
2u2 � u(1 + 2ln(h0))

sln H 2
));

where h0 =
2
p

2xslnHp
(u)

is the local min we found in the saddle method.

3.3. Conditional Probabilities. We have discussed long-run (over many voyages) distributions of
P(X > r) and P(Ac > h), but an interesting special case that should be discussed separately is con-
ditional distribution in the sense, what are distributions of P(X > r) and P(Ac > h) conditionally
on some random event, extremely high storm that caused some damages and we asks for frequencies
of safe returns to a harbor, nearest not necessarily point B. This would lead to models that remains
marked crossing, Slepian model for sea-state processes.

4. STATISTICS BASED ON SATELLITE DATA

This is the main object of studies in COMCISS. Our problem here is that we have data for
sea-state along lines (that just crosses the path from A to B). The data are then sampled in time with
return periods of c.a. 10 days. The data contain 7 years and hence for some positions storms may
be missing (7 years with storm durations of 1 day say and 10 days sampling intervals is somewhat
short). Consequently we have to use the data from other locations to improve estimates at the
particular place.

Here we will be concerned with the randomness of sea-state parameters. We will omit the
main wave direction j at all. But start with only the significant wave height, for simplicity of
notation denoted by H . We consider H in space and time, so it has three coordinates H (lo; la; t).
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The values of significant wave-height are usually splited in few discrete classes numerated by index
j = 1; : : : ;N H . Our objective is to find occupation probabilities

qj =
time spend on the sea with significant wave height no. j

duration of voyage
:
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APPENDIX I: FREQUENCY MODELING OF LOAD HISTORIES

Assume that the response is specified in the frequency domain. This means that the signal is
represented by a Fourier series

x(t) � m +

NX
i=1

ai cos(wi t) + bi sin(wi t)

where wi = i � 2p=T are angular frequencies, m is the mean of the signal and ai; bi are Fourier
coefficients.

The important characteristic of signals in frequency domain is their power spectrum ŝi =
(a2

i + b2
i )=(2Dw), where Dw is the sampling interval in frequency domain, i.e. wi = i �Dw. The

two-column matrix ŝ(wi) = (wi; ŝi) will be called the power spectrum of x(t).
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The sequence ji = arccos(ai=
p

2̂siDw) is called a sequence of phases and the Fourier series
can be written as follows

x(t) � m +

NX
i=1

p
2̂siDw cos(wi t + ji):

If the sampled signal contains exactly 2N + 1 points then x(t) is equal to its Fourier series at the
sampled points. In the special case when N = 2k, the so-called FFT (Fast Fourier Transform) can
be used in order to compute the Fourier coefficients (and the spectrum) from the measured signal
and in reverse the signal from Fourier coefficients.

As we have written before, the Fourier coefficient to the zero frequency is just the mean of the
signal, while the variance is given by s2 = Dw

P
ŝ(wi) �

R1
0 ŝ(w) dw. The last integral is called

the zero-order spectral moment l0. Similarly higher-order spectral moments are defined by

li =

Z 1

0
w

i ŝ(w) dw:

Random Functions in Spectral Domain. Assume that we get new measurements of a signal that one
is willing to consider as equivalent, but it is seldom identical to the first one. Obviously it will have
a different spectrum ŝ(w) and the phases will be changed. A useful mathematical model for such a
situation are the so-called random functions (stochastic processes) which will be denoted by X (t).
Here x(t) is seen as a particular randomly chosen function - a sample path. The simplest case that
models stationary signals with a fixed spectrum ŝ(w) is

X (t) = m +

NX
i=1

p
ŝiDw

p
2 cos(wi t +Ji);

where Ji are independent uniformly distributed phases. However, it is not a very realistic model,
since in practice we often observe variability in spectrum ŝ(w) between measured functions and
hence ŝi should be modeled as random variables too. In such a case, we assume that there is
a deterministic function S(w) such that the average value of ŝ(wi)Dw can be approximated by
S(wi)Dw and in many cases one can model ŝi = R2

i � S(wi)=2 where Ri are independent random
factors, all Rayleigh distributed. (Observe that the average value of R2

i is 2.) This gives the following
random function

X (t) = m +

NX
i=1

p
S(wi)DwRi cos(wi t +Ji):

The process X (t) has many useful properties that can be used in analysis like: for any fixed t, X (t) is
normally distributed, called also Gaussian distributed. A probability of any event defined for X (t)
can, in principal, be computed when the mean m and the spectral density S are known.

If Y (t) is an output of a linear filter with X (t) on the input, then Y (t) is also normally
distributed and we need to derive the spectrum of Y (t) to be able to analyze its properties. This
is a simple task, since if the transfer function of the filter H (w) is given, then the spectrum of
Y (t), denoted by SY , is given by SY (w) = jH (w)j2S(w). For example, the derivative X 0(t) is a
Gaussian process with mean zero and spectrum SY (w) = w2S(w). The variance of the derivative is
s2

X 0 =
R

SY (w) dw = l2.
The Gaussian process is a sum of cosine terms with amplitudes defined by the spectrum;

hence, it is not easy to relate the power spectrum and the fatigue damage. The crossing intensity
m(u), which yields the average number of up-crossings of the level u, is given by the celebrated Rice
formula

m(u) = f exp(�(u � m)2
=2s2):
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Using spectral moments we have that s2 = l0 while f = 1
2p

q
l2
l0

.

APPENDIX II: FATIGUE LIFE PREDICTION – RAINFLOW METHOD

For completeness we shall give some short review of fatigue life prediction methodology.
In laboratory experiments, one often subjects a specimen of a material to a constant amplitude

load, e.g. L(t) = s sin(wt) where s and w are constants, and counts the number of cycles (periods)
until it breaks. The number of load cycles N (s) as well as the amplitudes s are recorded. Note that
for small amplitudes, s < s1, N (s) � 1, i.e. no damage is observed. The amplitude s1 is called
the fatigue limit or the endurance limit. In practice, one often uses a simple model for N (s),

(13) N (s) =
�

K �1s�b s > s1;
1 s � s1;

where K is a (material dependent) stochastic variable, usually log-normally distributed, i.e. with
K �1 = Eg�1 where ln(E) 2 N(0; s2

E), and g, b , s2
E are fixed constants.

For irregular loads, also called variable amplitude loads, one is often combining the S-N
curve with a cycle counting method by means of the Palmgren-Miner linear damage accumulation
theory, to predict fatigue failure time. The cycle counting forms equivalent load cycles. The now
commonly used cycle counting method is rainflow counting and was introduced by Endo (1968).
It was designed to catch both slow and rapid variations of the load by forming cycles by pairing
high maxima with low minima even if they are separated by intermediate extremes. More precisely,
each local maximum is a top of a hysteresis loop with an amplitude that is computed using rainflow
algorithm.

Let tk be the time of the k:th local maximum and sk the amplitude of the attached hysteresis
loop. Define the total damage by

(14) D(t) =
X
tk�t

1
N (sk)

= K
X
tk�t

sbk = KDb (t);

where the sum contains all cycles up to time t. The fatigue life time T f , say, is shorter than t if
D(t) > 1. In other words, T f is defined as the time when D(t) crosses level 1. A very simple
predictor of T f is obtained by replacing K in Eq. (14) by a constant, for example the median value
of K that is g. For high cycle fatigue, the time to failure is long (more than 105=f̂ , where f̂ is the
mean frequency defined in section on crossings). Then for stationary (and ergodic and some other
mild assumptions) loads, the damage Db (t) can be approximated by its mean E[Db (t)] = db � t.
Here db is the damage intensity, i.e. how much damage is accumulated per time unit. This leads to
a very simple predictor of fatigue life time T̂ f =

1
gdb

One way of computing expected accumulated damage during a voyage is to find the distri-
bution of rainflow cycles. As before we are assuming that N voyages has been performed. During
each voyage all rainflow cycles are found and a histogram of its amplitudes is computed. Then
the distribution of rainflow cycle is defined as the average histogram when number of voyages N
increases to infinity.

Although at the first sight the exceedance probabilities and the distribution of rainflow cy-
cles seem to have little in common, in fact, it is not the case. We demonstrated that analysis of
exceedances probabilities is related to properties of crossings of levels (preferable height), while
rainflow cycles distribution can be computed from intensities of crossings of intervals, see Rych-
lik (1993a) for the definitions and proofs. Crossings of intervals can be bounded by crossings of
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levels, what, for Gaussian responses, leads to a commonly used Rayleigh approximation for cycles
amplitudes see Rychlik (1993b) and Rychlik and Leadbetter (1997) for details.
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