SYNERGISTIC INSTRUMENT DATA

A. Martin, C. Gommenginger

ASSUMPTIONS

WAVEMILL CONCEPT

- SAR ATI Ku-band
- dual beam at 45° squint at the surface (physically or electronically)
- VV and HH polarisation at the surface
- Incidence angle 30°
- one side ~200km
- altitude: 500–600km
- sun-synchronous (6am or 6pm)

PRIMARY PRODUCTS

Simultaneously

- Ocean Surface Current (1–5km)
- Ocean Wind Vector (1–5km)
- Swell directional spectrum

OUTLINE

Ancillary Data Need:

- o for Inversion
- for Validation
- for Scientific Exploitation

DATA FOR INVERSION

DO WE NEED PRECIPITATION?

Impact on:

 σ_0 : Strong for low wind speeds and/or high rain rates

Phase: Probable for high rain rates

Will affect:

- Ability to estimate wind-wave artefact velocity and accurate current
- Need Precipitation Data to identify rain event
 - existing source too coarse?
 - new rain Flags for Wavemill

DATA FOR INVERSION

DO WE NEED SEA SURFACE HEIGHT?

Impact error on:

PHASE: due to hybrid baseline

- which depends on pitch and yaw accuracy
- Wavemill sensitivity?
 - $\delta h = 1 \text{m} \Rightarrow \delta v_{surf} << 5 \text{cm/s} (PicoSAR study)$
 - Is this confirmed for this Wavemill configuration?
- Sources of SSH error:
 - orbit height?
 - geoid (>100km)
 - tides (large scale)
 - SSH changes e.g. Gulf Stream (1m over 100km)

DATA FOR VALIDATION

- Altimetry (S-3, S-6/J-CS, (SWOT), (COMPIRA))
 - Geostrophic current
 - Global product at ${\sim}1/4^{\circ},\,{\sim}7$ days; finest scale resolve ${\sim}100\text{km}.$
 - SAR alt.: Along track, fine scale: 20km, decorr. time of >10 days
 - Wind Speed at ~7km along track
 - Significant Wave: Swell + wind sea
- SAR imaging
 - Wind speed if wind direction information, 5km (S-1, 1km)
 - Total Current in quasi zonal direction
 - Swell directional spectrum
- scatterometry, radiometry, GNSS-R
 - wind at coarse resolution, 25km (12km)
- Maximum Cross-Correlation of SST, SSS, Ocean Color
 - Mean total current over few days at resolution >10km

DATA FOR SCIENTIFIC EXPLOITATION

Synergy with

- Fine scale altimetry
 - to relate geostrophic processes in mixed layer to surface ocean dynamics (S-3, S-6/J-CS, SWOT)

SST

- to estimate heat fluxes at submesoscale
- to study air-sea interaction over ocean fronts and eddies [Small et al., 2008]
- to compare SST derived vertical velocity with Wavemill derived estimates using Surface Quasi Geostrophy—SQG theory [Isern-Fontanet et al.]
- Ocean Color
 - to link upper ocean dynamics, vertical mixing and primary production [McGillicuddy et al.]

CONCLUSIONS

NEED FOR SIMULTANEOUS ACQUISITIONS?

NEED FOR INVERSION

- Precipitation: useful but not critical for inversion. Will need careful flagging.
- SSH: not need for inversion?

NEED FOR VALIDATION

 Standard cross-over and validation methods

NEED FOR SCIENTIFIC EXPLOITATION

Significant added scientific value of synergy with high resolution (HR) altimetry, HR SST and ocean color

WAVEMILL

- 500–600km
- desc. node: 6am or 6pm

S-3 — ALT. + OPTIC

- 815km
- desc. node: 10am

BUT large swath for optic

