WP4000: Potential Secondary Products

- WP4100: Investigation of PSP for Rivers and Lakes (Starlab)
- WP4200: Investigation of PSP for Swell and Ocean/Atmosphere (Ifremer)
- WP4300: Investigation of PSP for Cryosphere (Polar Imaging / SatOC)
- WP4400: Compilation and review of D4 (all)

WP4100

Potential Secondary Products: Lakes & Rivers

Introduction

Objective:

 To evaluate the capability of Wavemill to retrieve secondary terrestrial hydrology products

Demanding requirements:

- Environment heterogeneity
- Complexity of inflow and outflow processes

WP Focus

 Focus → main processes governing terrestrial hydrology:

- **Discharge:** volume flow rate, associated with rivers
- **Storage:** water mass stored (lakes, reservoirs)
- Not measured directly, but through models implying measurable *hydraulic variables*:
 - Channel width, stage, depth, water-surface slope, water-surface velocity...

WP Status

• Performed activities:

- Definition and characterisation of the hydrological processes: river discharge & water storage.
- Definition of preliminary scientific requirements for channel width, stage, depth, water-surface velocity & slope, and surface extent.
- Preliminary evaluation of Wavemill Performance for each hydrological variable.
- Estimation of potential benefit of water-surface currents derived from Wavemill in the SWOT mission.

River discharge

- Defined as the volume rate of water flow:
 - Volume of water that traverses a given cross-sectional area of the river per unit of time.

 $Q = A \overline{v} [\mathrm{m}^3/\mathrm{s}],$

where

AArea of the cross-section [m²] \bar{v} Average velocity [m/s]

– Assuming a rectangular channel: $Q = W Y \overline{v}$

River discharge

- Not likely that all the variables can be measured simultaneously with enough confidence.
- Statistically derived relationships:
 - Channel width, W [m]
 - Stage (*H*, [m]) and depth (*Y*, [m]).
 - Water-surface slope (S = d h/d x, [m/m])
 - Water-surface velocity (V, [m/s]).
 - Channel morphology parameters: sinuosity, channel slope, meander length, radius of curvature...

River discharge

- Estimation of hydraulic variables from space:
 - TOPEX/Poseidon nadir-looking radar altimeter: stage measurements with accuracies of decimetres
 - TerraSAR-X experimental ATI: river current velocities.
 - Future SWOT: river stage, slope and width
- Wavemill: Chance of estimating all required hydraulic variables in a single satellite pass:
 - ATI: currents velocity
 - XTI? Altimetry payload? Stage, slope

Storage in lakes and reservoirs

- Defined as the volume [m³] of accumulated water:
 - Main inputs: Direct rainfall, discharge of tributaries, underground inputs
 - Main outputs: Evaporation, ground seepage, surface outflow

dV/dt = Q - A(E-P),

where

- *V* Lake or reservoir volume [m³]
- Q Discharge (runoff) from the catchment basin [m³/s]
- *E* Evaporation rate over the lake per unit of area $[m^3/m^2 \cdot s]$
- *P* Precipitation rate over the lake per unit of area [m³/m²·s]

Storage in lakes and reservoirs

- Estimated indirectly from water level (stage) and inundated area variations.
- SAR systems are useful for shoreline detection
- XTI can provide measurements of water level and water level fluctuations
- Wavemill: XTI? Altimetry payload? TBD

Preliminary Scientific Requirements

Table 4.1: Requirements for streamflow/river discharge estimation.

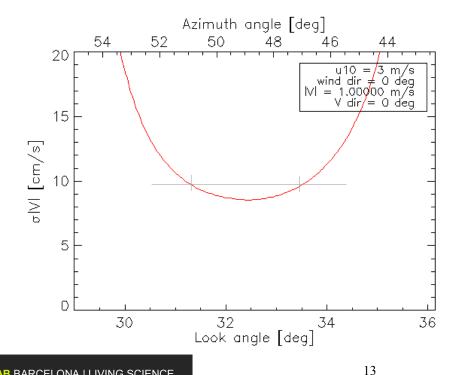
Variable	Product	Accuracy	Horizontal resolution	Observation cycle
Width	Georeferenced SLC	5,00%	100 m	3 d
Water-surface velocity	ATI	10 cm/s	100 m	3 d
Stage	XTI	10 cm	100 m	3 d
Depth	XTI + additional data	5,00%	100 m	3 d
Slope	XTI	1 cm / km	100 m	3 d
Discharge	ATI + XTI	30,00%	100 m	3 d

Table 4.2: Requirements for storage estimation.

Variable	Product	Accuracy	Horizontal resolution	Observation cycle
Surface extent	Georeferenced SLC	25,00%	1 km	30 d
Stage	XTI	10 cm	1 km	30 d

[IGOS - Coastal Theme Report]

Preliminary Wavemill performance


- Discharge:
 - 3 days obs. cycle \rightarrow WM 3-5 days revisit time
 - Channel width 5% accuracy \rightarrow WM 50 m resolution
 - High resolution stripmap mode to be considered over land
 - Channel width limited by azimuth displacement, geometric and vegetation effects
 - Stage and depth 10 cm accuracy \rightarrow requires XTI.
 - Water-surface slope \rightarrow requires XTI.
 - Synergy with SWOT altimetry products (11 days revisit time, 1-3 days revisit at fast sampling phase (at most 3 months)

Preliminary Wavemill performance

• Discharge:

Water surface velocity acc. 10 cm/s \rightarrow Requires a high number of looks: wide rivers, long reach

- For WM baseline operation mode, minimum river area 0.02 km² (100m width x 200m reach), ENL approx. 450 \rightarrow <10 cm/s accuracy for a ~30 km swath

High resolution stripmap mode may help complying with the 100m resolution requirement

Preliminary Wavemill performance

- Storage:
 - 30 days obs. cycle \rightarrow WM 3-5 days revisit time, req. met
 - Potential to monitor flood events
 - Surface extent: 25% accuracy for 1 km² surface → Wavemill SLC resolution 50 m, requirement met.
 - Stage measurement 10 cm accuracy \rightarrow requires XTI and high ENL:
 - A WM hybrid ATI-XTI configuration might provide stage estimates for calm water bodies.
 - A positive yaw attitude (platform steering) over land areas might be considered to provide XT baseline

Synergy with SWOT

- SWOT → river discharge from <u>stage/slope observations</u> + surface velocity model (Manning equation) (11 days revisit time)
- Wavemill → river discharge from <u>direct surface velocity</u> <u>observations</u> + external knowledge of stage/depth (3-5 days revisit time)

 Wavemill + SWOT → velocity + stage + channel width direct observations → Improved discharge estimates

Conclusions

- Discharge might be measured from surface velocity coupled with external information on the channel, for rivers > 100 m wide
 → Synergy with SWOT stage/slope capabilities
- Storage estimate will only be feasible with external knowledge of depth/stage in a pure AT configuration
- In order to measure discharge or storage in a single satellite pass, XTI or altimetry payload is required

 \rightarrow yaw steering over land to monitor calm waters

- River current velocity estimates can complement stream gauges or provide coverage for non-gauged streams
- To simultaneously comply with discharge accuracy and resolution requirements, a stripmap operation mode over land should be considered.