WP1000- Review of ATI SAR Surface Current Velocity retrieval

National Oceanography Centre

NATURAL ENVIRONMENT RESEARCH COUNCIL

WP1000 Overview

- in-depth literature review of past experimental and theoretical modelling studies relating to ATI SAR interferometry for retrieval of ocean currents
 - Only ATI SAR for currents; not SAR, not wind/waves
- Work performed Jan-April 2013
- D1: ATI SAR Surface Current Report
 - Final version issued Oct 2013

National Oceanography Centre

NATURAL ENVIRONMENT RESEARCH COUNCIL

WP1000 Objectives

- Review of ATI SAR Surface Current Velocity retrieval
- identify key geophysical phenomena affecting ATI surface current retrieval, review theoretical models & their capability to reproduce experimental results
- document past experimental results in terms of
 - environmental conditions
 - ground-truth used for validation
 - basic parameters of the radar systems
- elaborate the implications for a spaceborne Wavemill mission and Wavemill scientific product requirements

National Oceanography Centre

NATURAL ENVIRONMENT RESEARCH COUNCIL

Section 3. Key publications

- Goldstein & Zebker, 1987: Interferometric Radar Measurement of Ocean Surface Currents
- Graber, Thompson & Carande (1996): Ocean surface features and currents measured with SAR interferometry and HF radar
- Romeiser & Thompson, 2000: Numerical study on the ATI radar imaging mechanism of oceanic surface currents
- Frasier & Camps, 2001: Dual-beam interferometry for ocean surface current vector mapping
- KoRIOLiS, 2002: Study on Concepts for Radar Interferometry from satellites for Ocean (and Land) Applications
- The BNSC NEWTON study, 2002: Along Track SAR Interferometry for Ocean Currents and Swell
- Siegmund et al., 2004: First demonstration of surface currents imaged by hybrid along- and cross-track interferometric SAR
- Romeiser et al., 2005: Current measurements by SAR along-track interferometry from a space shuttle
- Toporkov et al., 2005: Sea surface velocity vector retrieval using dual-beam interferometry: First demonstration
- Sletten, 2006: An analysis of gradient-induced distortion in ATI-SAR imagery of surface currents
- Romeiser et al., 2010a: First Analysis of TerraSAR-X Along-Track InSAR-Derived Current Fields
- Kumagae et al., 2011: Sea Surface Current Measurement with Ku-Band SAR Along-Track Interferometry
- Toporkov et al., 2011: Surface Velocity Profiles in a Vessel's Turbulent Wake Observed by a Dual-Beam Along-Track Interferometric SAR
- Hansen et al., 2012: Simulation of radar backscatter and Doppler shifts of wave-current interaction in the presence of strong tidal current

National Oceanography Centre

WaPA Final Presentation ESTEC 25 Nov 2014

Annex A: Summary table (extract)

Reference	Radar system & geometry	Spatial Resolution	What & where	Environmental conditions & retrieval accuracy	Validation data sources	Errors, mitigation strategies & modelling
Junek <i>et al.</i> (2003)	Alt: 600 m, V: 100 m/s I: 69-86 deg Squint: 20 deg	Swath ~ 7km 16.7 (XT) m	Charlotte Harbour, Florida, USA	Biogenic surfactant slicks (i.e. wind < 5 m/s)		First airborne trials of prototype above Different backscatter intensity in forward and aft looks, attributed to directionality of surface wave spectrum (Bragg)
Anderson <i>et</i> <i>al.</i> (2003a)	Airborne, L & C- band JPL AIRSAR Alt: 8.6km, V: 216m/s B_{AT} : 19m (L) B_{AT} : 1.9m (C) I: 23-73 deg	10(AT) x 6(XT) m	Currents and waves Hawaii (close to north tip of Big Island), USA Kuroshio, SW Japan	Current: 0.25m/s (tide) Wind: strong wind shear (orographic effects) Waves: swell present Current: Kuroshio jet and eddy (1m/s)	None	Un-calibrated amplitude and phase Strong phase gradients due to poor aircraft attitude control Modelling: ATI phase modelled with composite model by Romeiser & Thompson (2000) with input from OCCAM & HOME tidal currents coupled with WAM 3rd generation wave model (wave-current interactions) and ECMWF winds
Siegmund <i>et al.</i> (2004)	Airborne, X-band Hybrid AT/XT (squinted) HH pol Alt: 3.2 km, V~80m/s B_{AT} : 0.034m B_{XT} : 1.56m I: 45 deg	0.5(AT) x 0.5(XT) m Accuracy: 0.2m/s	Land elevation and currents Estuary mouth of Weser river, Wadden Sea, German Bight	Shallow inter-tidal zone; tidal range: 3.6m Current: + 30 minutes from low tide; Max current: 0.7-0.9m/s Wind: 8-10m/s	Hydrodynamic model (TRIM-2D) Coastal weather station	Model to quantify ambiguity between elevation and velocity retrieval in hybrid Interferometric phase Mis-registration in azimuth due to XT baseline leads to bias in phase because of squint. Remove wind drift (3% Wind speed) and Bragg waves phase velocity (~0.2m/s) estimated with Romeiser & Thompson (2000) Resolves elevation from currents with two anti-parallel flights 10min apart.

National Oceanography Centre

WaPA Final Presentation ESTEC 25 Nov 2014

Siegmund et al., 2004

- Airborne X-band, HH, Squinted, Inc = 45 deg
- First hybrid Interferometric SAR to measure elevation and currents
- Reports biases in velocity due to azimuth mis-registration of squinted system

National Oceanography Centre

WaPA Final Presentation ESTEC 25 Nov 2014

Synthesis: InSAR systems

- Mainly airborne, some XTI on Space Shuttle (SRTM) and ATI on LEO satellite (TerraSAR-X).
- Radar frequency evolved from low frequency L-band in early ATI systems to high frequency (X and Ku-band)
 - Modelling predicts better performance at high frequencies
- Except for Siegmund et al., 2004, chosen polarisation is VV for improved SNR at far ranges in the swath
- Airborne systems use generally large incidence angles
 - 20-70 deg (Goldstein & Zebker, 1987; Anderson et al., 2003a)
 - 60 deg (Kumagae et al., 2011)
 - 70 deg (Toporkov et al., 2005)

National Oceanography Centre

NATURAL ENVIRONMENT RESEARCH COUNCIL

Synthesis: InSAR systems

- TerraSAR-X: limited azimuth sampling rate (PRF) and short effective ATI baseline => increased phase noise and ghost echoes of nearby land by aliasing (Romeiser et al., 2010a)
- SRTM: sensitivity of the phase to height of surrounding land severely hinders current retrieval in rivers (Romeiser et al., 2007).
- Squinted SAR systems to measure both current components in a single pass
 - but there are inherent errors for systems where hybrid baseline is achieved with squinted beams.
 - Bias in retrieved velocity linked to mis-registration in azimuth of moving surfaces in the fore and aft look of squinted systems
 - Gradient-induced distortion of ATI surface velocity maps caused by the displacement in azimuth of moving targets typical of SAR imaging

National Oceanography Centre

WaPA Final Presentation ESTEC 25 Nov 2014

Synthesis: Experiments & validation

- Vast array of oceanographic settings
 - mostly in areas with strong tidal regime (max current > 1 m/s)
 - Experiment sites mainly close to land
 - limits of the aircraft range? availability of validation data e.g. HF radar data within 45km from land?
- Means of validation of the ATI currents were, on the whole, disappointing.
 - Often comparisons with models, without information on forcing and validity.
 - Three notable exceptions:
 - Graber et al., 1996 (HF radar, weather buoys, directional wave buoys, current-meters and coincident ship campaigns)
 - Goldstein et al., 1989; Kumagae et al., 2011: validation against near-surface drifters
- Wind & waves info?
 - typically from a weather station in the vicinity
 - Only Perkovic et al., 2004 tries to derive wind from ATI scenes to interpret ATI currents.
 - Information about wave conditions is generally inexistent

National Oceanography Centre

NATURAL ENVIRONMENT RESEARCH COUNCIL

Synthesis: Errors & mitigation strategies

• ATTITUDE AND NAVIGATION ERRORS

- critical need for accurate platform attitude and navigation data during processing to avoid fluctuations and biases in the phase and resulting velocity fields.
 - Even after correcting these effects, low frequency fluctuations can remain and contribute 0.1-0.2 m/s bias in velocity.
 - Most studies mitigate these residual errors by calibrating the interferograms over land, setting retrieved velocity over land to zero.
- Toporkov et al., 2011, explore the use of ships as targets of known velocity to calibrate the ATI phase in open ocean where land is not imaged
 - But smearing of the ships in the SAR images (due to SAR imaging of moving targets) introduce estimated uncertainty in the ship velocity of the order of 0.2 m/s, which makes this approach of limited use in its present form.

National Oceanography Centre

Synthesis: Errors & mitigation strategies

LONG SWELL WAVES

- Typically, if swell waves are not visible in the high-resolution ATI images, no swell correction is applied
- Otherwise, the effect of long swell waves is mitigated by degrading the spatial resolution of the current maps to grid scale greater than the swell wavelength
 - averaging, smoothing and filtering down to 100 x 100 metres or coarser
 - If fine spatial resolution needs to be retained (e.g. Toporkov et al., 2005), there is no reported strategy to mitigate the effect of swell on ATI currents.
- Wind
 - contribution to surface motion by wind drift is also recognised, and is typically estimated as 3 to 5 % of the wind speed at 10 metres in the direction of the wind
 - legitimate constituent of the surface current one wants to measure
 - this contribution by wind to surface displacement is separate from, and in addition to, the unwanted surface motion related to the phase velocity of the wind-generated Bragg scatterers

National Oceanography Centre

WaPA Final Presentation ESTEC 25 Nov 2014

Synthesis: Theoretical modelling and model performance

- Unwanted contributions to ATI signals by ocean surface wind and waves are the most important cause of errors in ATI retrieved currents
 - Surface wave contribution is usually quantified and removed using a theoretical scattering model
 - Several models available
 - Thompson et al., 1989;1991
 - Romeiser & Thompson, 2000
 - DopRIM (e.g. Hansen et al., 2012)
 - Much to learn from the SAR Doppler centroid & SAR wind literature

National Oceanography Centre

NATURAL ENVIRONMENT RESEARCH COUNCIL

Conclusions

- Extensive review of ATI SAR literature
 - Provided useful pointers to potential issues
 - Azimuth ambiguity; squint mis-registration; sensitivity to attitude,...
 - Problems with validating ocean surface currents
 - Unwanted wind & waves effects
 - Available models to correct wave effects
 - What we missed and learned since ?
 - Lessons learned from SAR Doppler centroid and SAR wind retrieval experience

National Oceanography Centre

NATURAL ENVIRONMENT RESEARCH COUNCIL