Mechanisms of interannual to decadal sea level variability along the European coasts

Francisco M. Calafat National Oceanography Centre, UK

> Collaborators: Don P. Chambers, University of South Florida, USA Michael N. Tsimplis, National Oceanography Centre, UK

National Oceanography Centre

NATURAL ENVIRONMENT RESEARCH COUNCIL

Global mean sea level is projected to rise ~53 cm over 21st century

Motivation

Moreover, sea level varies also on a wide range of temporal scales

Sea Level Space Watch Workshop – NOC | 30 March 2015

Let's do a little exercise: when will the **0.5 m threshold** be crossed?

Improve our understanding of the interannual to decadal sea level variability along the European coasts so that we can produce better regional projections

"Everything should be made as simple as possible, but not simpler"

What causes the sea level to change?

We explore decadal fluctuations from long <u>tide gauge records</u> using a combination of:

- <u>Atmospheric observations</u>: sea level pressure and wind
- A <u>barotropic model</u>: a 2D version of the HAMSOM model forced with only wind (1958-2008) (*Jordá et al., 2012*)
- A <u>baroclinic model</u>: the 3D GECCO global ocean synthesis (1952-2001) (*Kohl and Stammer, 2008*)

Sea level and the North Atlantic Oscillation

Calafat et al 2012

High **correlation** with NAO and **coherency** between tide gauges

Sea Level Space Watch Workshop – NOC | 30 March 2015

The contribution of atmospheric pressure

Sea Level Space Watch Workshop – NOC | 30 March 2015

The barotropic response to the wind

The barotropic response to wind explains a very small fraction of the variability

Sea level from the HAMSOM model

Calafat et al 2012 Sea Level Space Watch Workshop – NOC | 30 March 2015

A coherent sea level signal along the coast

The **coherent signal** is limited to a narrow band along the coast

 \Longrightarrow

Subtropical gyre fluctuations or wave propagation?

Contribution from the subtropical gyre

North Atlantic large-scale circulation

Barotropic streamfunction

$$\psi(x,y,t) = \int_{-H}^{0} \int_{x_{E}}^{x} v(x',y,z,t) dx' dz$$

Transport of the subtropical gyre

We found <u>no correlation</u> between the strength of the subtropical gyre and the sea level along the eastern boundary

The baroclinic response to the longshore wind

The response is **not local**. It can be expressed as a sum of modes (waves) with amplitudes given by:

$$A(y,t) = \int_{y_0}^{y} B\tau^{s}\left(y',t-\frac{y-y'}{c}\right)dy'$$

Calafat et al 2012 Sea Level Space Watch Workshop – NOC | 30 March 2015

What is the extension of this signal?

Calafat et al 2013

What is the extension of this signal?

Sea Level Space Watch Workshop – NOC | 30 March 2015

- There is significant decadal-scale variability in the coastal zone
- Such variability can be explained as a response to changes in **longshore wind forcing** and **boundary waves propagation**
- Variations are highly coherent along the coast from the Canary Islands up to the Norwegian coast
- Open-ocean and coastal sea level are **decoupled**, hence the need for improved altimetry data at the coast that help us understand the transmission of oceanic signal across the shelf to the coast